Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916993

RESUMO

The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.

2.
J Intern Med ; 296(1): 53-67, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654517

RESUMO

BACKGROUND: The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS: We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS: Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION: The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.


Assuntos
Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/mortalidade , Feminino , Prognóstico , Masculino , Idoso , Pessoa de Meia-Idade , Suécia , Cadeias de Markov , Idoso de 80 Anos ou mais , Transfusão de Eritrócitos , Transfusão de Sangue , Adulto
3.
Clin Cancer Res ; 29(20): 4256-4267, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37498312

RESUMO

PURPOSE: Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN: We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS: SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS: These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.


Assuntos
Genômica , Neoplasias , Humanos , Fatores de Processamento de RNA/genética , Estudos Prospectivos , Medição de Risco , Perfilação da Expressão Gênica , Mutação , Fosfoproteínas/genética , Prognóstico
4.
Viruses ; 15(2)2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36851659

RESUMO

The African Swine Fever Virus (ASFV) is an economically important, large DNA virus which causes a highly contagious and frequently fatal disease in domestic pigs. Due to the acute nature of the infection and the complexity of the protective porcine anti-ASFV response, there is no accepted vaccine in use. As resistance to ASFV is known to correlate with a robust IFN response, the virus is predicted to have evolved strategies to inhibit innate immunity by modulating the IFN response. The deletion of virus host evasion gene(s) inhibiting IFN is a logical solution to develop an attenuated virus vaccine. One such candidate, the ASFV ORF I329L gene, is highly conserved in pathogenic and non-pathogenic virus isolates and in this study we confirm and extend the conclusion that it has evolved for the inhibition of innate immunity initiated through Toll-like receptors (TLRs). Specifically, the ASFV I329L extracellular (ECD) and intracellular (ICD) domains inhibit TLR signalling by two entirely different mechanisms. Bioinformatics modelling suggests that the ECD inhibits several TLR signalling pathways through a short sequence homologous to the conserved TLR dimerization domain, here termed the putative dimerization domain (PDD). Remarkably, both full length and PDD constructs of I329L were demonstrated to inhibit activation, not only of TLR3, but also TLR4, TLR5, TLR8 and TLR9. Additionally, the demonstration of a weak association of I329L with TLR3 is consistent with the formation of a non-signalling I329L-TLR3 heterodimer, perhaps mediated through the PDD of I329L. Finally, the ICD associates with TRIF, thereby impacting on both TLR3 and TLR4 signalling. Thus, I329L offers potential as a general inhibitor of TLR responses and is a rational candidate for construction and testing of an I329L deletion mutant vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , Suínos , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Vacinas Atenuadas , Receptores Toll-Like/metabolismo
6.
Elife ; 62017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632131

RESUMO

Zebrafish display a distinct ability to regenerate their heart following injury. However, this ability is not shared by another teleost, the medaka. In order to identify cellular and molecular bases for this difference, we performed comparative transcriptomic analyses following cardiac cryoinjury. This comparison points to major differences in immune cell dynamics between these models. Upon closer examination, we observed delayed and reduced macrophage recruitment in medaka, along with delayed neutrophil clearance. To investigate the role of immune responses in cardiac regeneration, we delayed macrophage recruitment in zebrafish and observed compromised neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. In contrast, stimulating Toll-like receptor signaling in medaka enhanced immune cell dynamics and promoted neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. Altogether, these data provide further insight into the complex role of the immune response during regeneration, and serve as a platform to identify and test additional regulators of cardiac repair.


Assuntos
Traumatismos Cardíacos/patologia , Imunidade Celular , Regeneração , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Macrófagos/imunologia , Miócitos Cardíacos/fisiologia , Neutrófilos/imunologia , Oryzias , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...