Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 21(1): 451, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446004

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) remains one of the world's most known aggressive malignancies with a high mortality rate. Molecular biological analysis and bioinformatics are of great importance as they have recently occupied a large area in the studies related to the identification of various biomarkers to predict survival for LUAD patients. In our study, we attempted to identify a new prognostic model by developing a new algorithm to calculate the allele frequency deviation (AFD), which in turn may assist in the early diagnosis and prediction of clinical outcomes in LUAD. METHOD: First, a new algorithm was developed to calculate AFD using the whole-exome sequencing (WES) dataset. Then, AFD was measured for 102 patients, and the predictive power of AFD was assessed using Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and area under the curve (AUC). Finally, multivariable cox regression analyses were conducted to evaluate the independence of AFD as an independent prognostic tool. RESULT: The Kaplan-Meier analysis showed that AFD effectively segregated patients with LUAD into high-AFD-value and low-AFD-value risk groups (hazard ratio HR = 1.125, 95% confidence interval CI 1.001-1.26, p = 0.04) in the training group. Moreover, the overall survival (OS) of patients who belong to the high-AFD-value group was significantly shorter than that of patients who belong to the low-AFD-value group with 42.8% higher risk and 10% lower risk of death for both groups respectively (HR for death = 1.10; 95% CI 1.01-1.2, p = 0.03) in the training group. Similar results were obtained in the validation group (HR = 4.62, 95% CI 1.22-17.4, p = 0.02) with 41.6%, and 5.5% risk of death for patients who belong to the high and low-AFD-value groups respectively. Univariate and multivariable cox regression analyses demonstrated that AFD is an independent prognostic model for patients with LUAD. The AUC for 5-year survival were 0.712 and 0.86 in the training and validation groups, respectively. CONCLUSION: AFD was identified as a new independent prognostic model that could provide a prognostic tool for physicians and contribute to treatment decisions.

2.
Cancer Cell Int ; 21(1): 294, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092242

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most common types in the world with a high mortality rate. Despite advances in treatment strategies, the overall survival (OS) remains short. Our study aims to establish a reliable prognostic signature closely related to the survival of LUAD patients that can better predict prognosis and possibly help with individual monitoring of LUAD patients. METHODS: Raw RNA-sequencing data were obtained from Fudan University and used as a training group. Differentially expressed genes (DEGs) for the training group were screened. The univariate, least absolute shrinkage and selection operator (LASSO), and multivariate cox regression analysis were conducted to identify the candidate prognostic genes and construct the risk score model. Kaplan-Meier analysis, time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic power and performance of the signature. Moreover, The Cancer Genome Atlas (TCGA-LUAD) dataset was further used to validate the predictive ability of prognostic signature. RESULTS: A prognostic signature consisting of seven prognostic-related genes was constructed using the training group. The 7-gene prognostic signature significantly grouped patients in high and low-risk groups in terms of overall survival in the training cohort [hazard ratio, HR = 8.94, 95% confidence interval (95% CI)] [2.041-39.2]; P = 0.0004), and in the validation cohort (HR = 2.41, 95% CI [1.779-3.276]; P < 0.0001). Cox regression analysis (univariate and multivariate) demonstrated that the seven-gene signature is an independent prognostic biomarker for predicting the survival of LUAD patients. ROC curves revealed that the 7-gene prognostic signature achieved a good performance in training and validation groups (AUC = 0.91, AUC = 0.7 respectively) in predicting OS for LUAD patients. Furthermore, the stratified analysis of the signature showed another classification to predict the prognosis. CONCLUSION: Our study suggested a new and reliable prognostic signature that has a significant implication in predicting overall survival for LUAD patients and may help with early diagnosis and making effective clinical decisions regarding potential individual treatment.

3.
Oxid Med Cell Longev ; 2020: 4196548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381264

RESUMO

The aim of this study was to characterize and reveal the protective effects of cinnamaldehyde (CA) against mesenteric ischemia-reperfusion- (I/R-) induced lung and liver injuries and the related mechanisms. Sprague-Dawley (SPD) rats were pretreated for three days with 10 or 40 mg/kg/d, ig of CA, and then induced with mesenteric ischemia for 1 h and reperfusion for 2 h. The results indicated that pretreatment with 10 or 40 mg/kg of CA attenuated morphological damage in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly restored the levels of aspartate transaminase (AST) and alanine transaminase (ALT) in mesenteric I/R-injured liver tissues, indicating the improvement of hepatic function. CA also significantly attenuated the inflammation via reducing myeloperoxidase (MOP) activity and downregulating the expression of inflammation-related proteins, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (Cox-2), and tumor necrosis factor receptor type-2 (TNFR-2) in both lung and liver tissues of mesenteric I/R-injured rats. Pretreatment with CA significantly downregulated nuclear factor kappa B- (NF-κB-) related protein expressions (NF-κB p65, NF-κB p50, I kappa B alpha (IK-α), and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß)) in both lung and liver tissues of mesenteric I/R-injured rats. CA also significantly downregulated the protein expression of p53 family members, including caspase-3, caspase-9, Bax, and p53, and restored Bcl-2 in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly reduced TUNEL-apoptotic cells and significantly inhibited p53 and NF-κB p65 nuclear translocation in both lung and liver tissues of mesenteric I/R-injured rats. CA neither induced pulmonary and hepatic histological alterations nor affected the parameters of inflammation and apoptosis in sham rats. We conclude that CA alleviated mesenteric I/R-induced pulmonary and hepatic injuries via attenuating apoptosis and inflammation through inhibition of NF-κB and p53 pathways in rats, suggesting the potential role of CA in remote organ ischemic injury protection.


Assuntos
Acroleína/análogos & derivados , Isquemia Mesentérica/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/prevenção & controle , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Hepatopatias/etiologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Masculino , Isquemia Mesentérica/complicações , Isquemia Mesentérica/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
4.
Pharmacol Res ; 161: 105130, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818653

RESUMO

SPINK1 overexpression promotes cancer cell aggressiveness and confers chemo-resistance to multiple drugs in pancreatic cancer. Oleanolic acid (OA) derivatives possess active effects against different cancers. Here we report the effect of K73-03, a new novel OA derivative, against pancreatic cancer through mitochondrial dysfunction via miR-421/SPINK1 regulation. We examined the binding ability of miR-421 with SPINK1-3'UTR Luciferase reporter assays. Moreover, miR-421/SPINK1 expressions in pancreatic cancer, with or without K73-03 treatment, were evaluated. Cells viability, migration, autophagy, mitochondrial function and apoptosis were examined with or without K73-03 treatment. We established that the K73-03 effect on the miR-421 that plays a crucial role in the regulation of SPINK1 in pancreatic cancer. Our findings indicated that K73-03 inhibited the mitochondrial function that led to inducing autophagy and apoptosis through epigenetic SPINK1 down-regulation via miR-421 up-regulation in pancreatic cancer. Furthermore, the inhibition of miR-421 expression in pancreatic cancer cells abolished the efficacy of K73-03 against SPINK1 oncogenic properties. We found an interesting finding that the interaction between miR-421 and SPINK1 is related to mitochondrial function through the effect of K73-03. Further, SPINK1 appear to be the molecular targets of K73-03 especially more than gemcitabine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , MicroRNAs/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/síntese química , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Transcrição Gênica , Inibidor da Tripsina Pancreática de Kazal/genética , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Cell Int ; 20: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123520

RESUMO

BACKGROUND AND AIMS: microRNAs (miRNAs) have been reported to regulate proliferation and migration by down-regulating the expression of target genes. The aims of this study were to investigate whether miR-4316 inhibited proliferation and migration by downregulating vascular endothelial growth factor A (VEGF-A) and its clinical significance in gastric cancer (GC). METHODS: The clinical tissues of the GC patients for miR-4316 and VEGF-A were detected by qRT-PCR. The protein levels of VEGF-A and c-Met were determined by western blotting. Cell Proliferation, migration, and colony forming assays were conducted to show whether miR-4316 affects proliferation by CCK-8, migration by transwell, wound healing and colony formation assays. The bioinformatic methods and luciferase reporter assay were applied to detect the relationship between miRNA and VEGF-A on its targeting 3-untranslated regions (3-UTRs). CCK-8, colony formation, wound healing, and transwell assay were performed to explore the function of miR-4316. RESULTS: The results of qRT-PCR indicated that miR-4316 expression level was significantly downregulated in human GC tissues and GC cell lines compared with their control. miR-4316 inhibited proliferation, migration and colony formation in GC cell lines by reducing VEGF-A. And western blot results indicated that miR-4316 significantly inhibited GC through repressing VEGF-A and c-Met. The investigation of Luciferase assay indicated that VEGF-A is a direct target gene of miR-4316. CONCLUSIONS: miR-4316 suppressed proliferation and migration of GC through the VEGF-A gene. MiR-4316 acts as a tumor suppressor by targeting VEGF-A and this indicated that MiR-4316 might be a potential therapeutic target for GC.

6.
Biomed Pharmacother ; 121: 109644, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31766099

RESUMO

BACKGROUND: The molecular mechanisms of gastric cancer (GC) development are very complicated. Recent studies revealed that DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein (DC-SIGNR) is involved in colon cancer and GC biological processes. However, the exact roles of DC-SIGN in GC remain unrevealed. METHODS: DC-SIGN overexpression and knockdown experiments were performed by using DC-SIGN shRNA or DC-SIGN plasmid to investigate the biological roles of DC-SIGN in proliferation, cell cycle progression, migration and invasion of GC cells in vitro. Furthermore, the lncRNA profiles of SGC-7901 cells with control shRNA and DC-SIGN shRNA were generated by using microarray analysis. Mechanistically, the relationship between DC-SIGN, RP11-181G12.2 and the JAK2/STAT3 signaling pathway was then investigated using qRT-PCR and western blot assays. Additionally, we analyzed DC-SIGN and RP11-181G12.2 expression levels in GC specimens based on the Cancer Genome Atlas database. RESULTS: In this study, the results showed that DC-SIGN was highly expressed in GC cells and significantly correlated with advanced clinical stage and lymphatic metastasis. Downregulation of DC-SIGN significantly inhibited the proliferation, cell cycle progression, migration and invasion of GC cells in vitro. The reverse results could partly be seen with the upregulation of DC-SIGN. Mechanistically, knockdown of DC-SIGN inactivated the JAK2/STAT3 signaling pathway, and overexpression of DC-SIGN activated the JAK2/STAT3 signaling pathway. In addition, through LncPath microarray analysis, we identified a lncRNA, RP11-181G12.2, that was significantly upregulated after knockdown of DC-SIGN; this was also confirmed by qRT-PCR. Furthermore, RP11-181G12.2 knockdown enhanced DC-SIGN expression in GC cells, further activating the JAK2/STAT3 signaling pathway. In contrast, DC-SIGN overexpression suppressed RP11-181G12.2 expression. CONCLUSIONS: Our study suggests that DC-SIGN might be involved in the progression of GC by regulating the JAK2/STAT3 signaling pathway and affecting lncRNA RP11-181G12.2 expression.


Assuntos
Moléculas de Adesão Celular/genética , Janus Quinase 2/genética , Lectinas Tipo C/genética , RNA Longo não Codificante/genética , Receptores de Superfície Celular/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estômago/patologia , Neoplasias Gástricas/patologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...