Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 87(8): 1853-1865, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119159

RESUMO

The scouring depth caused by the water jet outputs from a dam is one of the crucial parameters for design purposes. Due to the importance of the subject, several laboratory studies have been conducted to understand this subject. Nevertheless, using soft computing techniques is a new attitude for modeling and predicting the natural process parameters. Herein, the types of soft computing techniques for estimating the scouring depth of a plunge pool caused by the symmetrical crossing jets have been explored. The parameters involved in the scouring phenomenon are densimetric Froude number, tailwater depth, vertical jet angle, horizontal crossing angles, and the distance between the crossing points of two jets and the water level. The prediction results show that the Multi-Layer Perceptron (MLP) model gives the best performance among the other models tested here. The Pearson correlation coefficient, root mean square error, and normalized root mean square error for the MLP model were 0.9527, 0.9039, and 19.36% for the test phase, respectively. Furthermore, based on the sensitivity analysis, the parameters, for instance, tailwater depth and vertical jet angle have the highest and lowest effects for predicting the scouring depth of a plunge pool, respectively.


Assuntos
Redes Neurais de Computação , Água
2.
J Environ Manage ; 286: 112250, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33752153

RESUMO

The continuous growing demand for water, prolonged periods of drought, and climatic uncertainties attributed mainly to climate change mean surface water reservoirs more than ever need to be managed efficiently. Several optimization algorithms have been developed to optimize multi-reservoir systems operation, mostly during severe dry/wet seasons, to mitigate extreme-events consequences. Yet, convergence speed, presence of local optimums, and calculation-cost efficiency are challenging while looking for the global optimum. In this paper, the problem of finding an efficient optimal operation policy in multi-reservoir systems is discussed. The complexity of the long-term operating rules and the reservoirs' upstream and downstream joint-demands projected in recursive constraints make this problem formidable. The original Coral Reefs Optimization (CRO) algorithm, which is a meta-heuristic evolutionary algorithm, and two modified versions have been used to solve this problem. Proposed modifications reduce the calculation cost by narrowing the search space called a constrained-CCRO and adjusting reproduction operators with a reinforcement learning approach, namely the Q-Learning method (i.e., the CCRO-QL algorithm). The modified versions search for the optimum solution in the feasible region instead of the entire problem domain. The models' performance has been evaluated by solving five mathematical benchmark problems and a well-known continuous four-reservoir system (CFr) problem. Obtained results have been compared with those in the literature and the global optimum, which Linear Programming (LP) achieves. The CCRO-QL is shown to be very calculation-cost-effective in locating the global optimum or near-optimal solutions and efficient in terms of convergence, accuracy, and robustness.


Assuntos
Algoritmos , Recifes de Corais , Aprendizado de Máquina , Água
3.
PLoS One ; 14(5): e0217499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150443

RESUMO

Reference evapotranspiration (ET0) plays a fundamental role in irrigated agriculture. The objective of this study is to simulate monthly ET0 at a meteorological station in India using a new method, an improved support vector machine (SVM) based on the cuckoo algorithm (CA), which is known as SVM-CA. Maximum temperature, minimum temperature, relative humidity, wind speed and sunshine hours were selected as inputs for the models used in the simulation. The results of the simulation using SVM-CA were compared with those from experimental models, genetic programming (GP), model tree (M5T) and the adaptive neuro-fuzzy inference system (ANFIS). The achieved results demonstrate that the proposed SVM-CA model is able to simulate ET0 more accurately than the GP, M5T and ANFIS models. Two major indicators, namely, root mean square error (RMSE) and mean absolute error (MAE), indicated that the SVM-CA outperformed the other methods with respective reductions of 5-15% and 5-17% compared with the GP model, 12-21% and 10-22% compared with the M5T model, and 7-15% and 5-18% compared with the ANFIS model, respectively. Therefore, the proposed SVM-CA model has high potential for accurate simulation of monthly ET0 values compared with the other models.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental/métodos , Lógica Fuzzy , Rios , Máquina de Vetores de Suporte , Temperatura , Vento
4.
PLoS One ; 14(5): e0217634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150467

RESUMO

Solar energy is a major type of renewable energy, and its estimation is important for decision-makers. This study introduces a new prediction model for solar radiation based on support vector regression (SVR) and the improved particle swarm optimization (IPSO) algorithm. The new version of algorithm attempts to enhance the global search ability for the PSO. In practice, the SVR method has a few parameters that should be determined through a trial-and-error procedure while developing the prediction model. This procedure usually leads to non-optimal choices for these parameters and, hence, poor prediction accuracy. Therefore, there is a need to integrate the SVR model with an optimization algorithm to achieve optimal choices for these parameters. Thus, the IPSO algorithm, as an optimizer is integrated with SVR to obtain optimal values for the SVR parameters. To examine the proposed model, two solar radiation stations, Adana, Antakya and Konya, in Turkey, are considered for this study. In addition, different models have been tested for this prediction, namely, the M5 tree model (M5T), genetic programming (GP), SVR integrated with four different optimization algorithms SVR-PSO, SVR-IPSO, Genetic Algorithm (SVR-GA), FireFly Algorithm (SVR-FFA) and the multivariate adaptive regression (MARS) model. The sensitivity analysis is performed to achieve the highest accuracy level of the prediction by choosing different input parameters. Several performance measuring indices have been considered to examine the efficiency of all the prediction methods. The results show that SVR-IPSO outperformed M5T and MARS.


Assuntos
Energia Solar , Luz Solar , Máquina de Vetores de Suporte , Algoritmos , Previsões , Humanos , Umidade , Análise de Regressão , Turquia , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...