Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ; 43(4): 969-980, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452522

RESUMO

BACKGROUND & AIMS: Improving maternal gut health in pregnancy and lactation is a potential strategy to improve immune and metabolic health in offspring and curtail the rising rates of inflammatory diseases linked to alterations in gut microbiota. Here, we investigate the effects of a maternal prebiotic supplement (galacto-oligosaccharides and fructo-oligosaccharides), ingested daily from <21 weeks' gestation to six months' post-partum, in a double-blinded, randomised placebo-controlled trial. METHODS: Stool samples were collected at multiple timepoints from 74 mother-infant pairs as part of a larger, double-blinded, randomised controlled allergy intervention trial. The participants were randomised to one of two groups; with one group receiving 14.2 g per day of prebiotic powder (galacto-oligosaccharides GOS and fructo-oligosaccharides FOS in ratio 9:1), and the other receiving a placebo powder consisting of 8.7 g per day of maltodextrin. The faecal microbiota of both mother and infants were assessed based on the analysis of bacterial 16S rRNA gene (V4 region) sequences, and short chain fatty acid (SCFA) concentrations in stool. RESULTS: Significant differences in the maternal microbiota profiles between baseline and either 28-weeks' or 36-weeks' gestation were found in the prebiotic supplemented women. Infant microbial beta-diversity also significantly differed between prebiotic and placebo groups at 12-months of age. Supplementation was associated with increased abundance of commensal Bifidobacteria in the maternal microbiota, and a reduction in the abundance of Negativicutes in both maternal and infant microbiota. There were also changes in SCFA concentrations with maternal prebiotics supplementation, including significant differences in acetic acid concentration between intervention and control groups from 20 to 28-weeks' gestation. CONCLUSION: Maternal prebiotic supplementation of 14.2 g per day GOS/FOS was found to favourably modify both the maternal and the developing infant gut microbiome. These results build on our understanding of the importance of maternal diet during pregnancy, and indicate that it is possible to intervene and modify the development of the infant microbiome by dietary modulation of the maternal gut microbiome.


Assuntos
Microbiota , Prebióticos , Feminino , Humanos , Lactente , Gravidez , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Lactação , Mães , Oligossacarídeos , Pós , RNA Ribossômico 16S , Recém-Nascido
2.
Mar Environ Res ; 192: 106239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926039

RESUMO

Seawater contains a wealth of genetic information, representing the biodiversity of numerous species residing within a particular marine habitat. Environmental DNA (eDNA) metabarcoding offers a cost effective, non-destructive method for large scale monitoring of environments, as diverse taxonomic groups are detected using metabarcoding assays. A large-scale eDNA monitoring program of marine vertebrates was conducted across three sampling seasons (Spring 2018, Autumn 2019; Spring 2019) in coastal waters of Brazil. The program was designed to investigate eDNA as a testing method for long term monitoring of marine vertebrates following the Fundão tailings dam failure in November 2015. While no baseline samples were available prior to the dam failure there is still value in profiling the taxa that use the impacted area and the trajectory of recovery. A total of 40 sites were sampled around the mouths of eight river systems, covering approximately 500 km of coastline. Metabarcoding assays targeting the mitochondrial genes 16S rRNA and COI were used to detect fish, marine mammals and elasmobranchs. We detected temporal differences between seasons and spatial differences between rivers/estuaries sampled. Overall, the largest eDNA survey in Brazil to date revealed 69 families from Class Actinopterygii (fish), 15 species from Class Chondrichthyes (sharks and rays), 4 species of marine and estuarine mammals and 23 species of conservation significance including 2 species of endangered dolphin. Our large-scale study reinforces the value eDNA metabarcoding can bring when monitoring the biodiversity of coastal environments and demonstrates the importance of collection of time-stamped environmental samples to better understand the impacts of anthropogenic activities.


Assuntos
DNA Ambiental , Humanos , Animais , RNA Ribossômico 16S/genética , Brasil , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos , Vertebrados/genética , Biodiversidade , Ecossistema , Peixes , Mamíferos/genética
3.
Ecol Evol ; 13(4): e10014, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113520

RESUMO

Biomonitoring is vital for establishing baseline data that is needed to identify and quantify ecological change and to inform management and conservation activities. However, biomonitoring and biodiversity assessment in arid environments, which are predicted to cover 56% of the Earth's land surface by 2100, can be prohibitively time consuming, expensive, and logistically challenging due to their often remote and inhospitable nature. Sampling of environmental DNA (eDNA) coupled with high-throughput sequencing is an emerging biodiversity assessment method. Here we explore the application of eDNA metabarcoding and various sampling approaches to estimate vertebrate richness and assemblage at human-constructed and natural water sources in a semi-arid region of Western Australia. Three sampling methods: sediment samples, filtering through a membrane with a pump, and membrane sweeping in the water body, were compared using two eDNA metabarcoding assays, 12S-V5 and 16smam, for 120 eDNA samples collected from four gnammas (gnamma: Australian Indigenous Noongar language term-granite rock pools) and four cattle troughs in the Great Western Woodlands, Western Australia. We detected higher vertebrate richness in samples from cattle troughs and found differences between assemblages detected in gnammas (more birds and amphibians) and cattle troughs (more mammals, including feral taxa). Total vertebrate richness was not different between swept and filtered samples, but all sampling methods yielded different assemblages. Our findings indicate that eDNA surveys in arid lands will benefit from collecting multiple samples at multiple water sources to avoid underestimating vertebrate richness. The high concentration of eDNA in small, isolated water bodies permits the use of sweep sampling that simplifies sample collection, processing, and storage, particularly when assessing vertebrate biodiversity across large spatial scales.

4.
Sci Total Environ ; 873: 162322, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801404

RESUMO

Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.


Assuntos
DNA Ambiental , Animais , Monitoramento Biológico , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Biodiversidade , Peixes
5.
Front Microbiol ; 13: 905901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966698

RESUMO

The human gut microbiome has increasingly been associated with autism spectrum disorder (ASD), which is a neurological developmental disorder, characterized by impairments to social interaction. The ability of the gut microbiota to signal across the gut-brain-microbiota axis with metabolites, including short-chain fatty acids, impacts brain health and has been identified to play a role in the gastrointestinal and developmental symptoms affecting autistic children. The fecal microbiome of older children with ASD has repeatedly shown particular shifts in the bacterial and fungal microbial community, which are significantly different from age-matched neurotypical controls, but it is still unclear whether these characteristic shifts are detectable before diagnosis. Early microbial colonization patterns can have long-lasting effects on human health, and pre-emptive intervention may be an important mediator to more severe autism. In this study, we characterized both the microbiome and short-chain fatty acid concentrations of fecal samples from young children between 21 and 40 months who were showing early behavioral signs of ASD. The fungal richness and acetic acid concentrations were observed to be higher with increasing autism severity, and the abundance of several bacterial taxa also changed due to the severity of ASD. Bacterial diversity and SCFA concentrations were also associated with stool form, and some bacterial families were found with differential abundance according to stool firmness. An exploratory analysis of the microbiome associated with pre-emptive treatment also showed significant differences at multiple taxonomic levels. These differences may impact the microbial signaling across the gut-brain-microbiota axis and the neurological development of the children.

6.
Gigascience ; 112022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365832

RESUMO

Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.


Assuntos
Genômica , Venenos de Serpentes , Animais , Genoma , Répteis/genética , Venenos de Serpentes/genética , Serpentes/genética
7.
Commun Biol ; 4(1): 1231, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711927

RESUMO

Rising temperatures and extreme climate events are propelling tropical species into temperate marine ecosystems, but not all species can persist. Here, we used the heatwave-driven expatriation of tropical Black Rabbitfish (Siganus fuscescens) to the temperate environments of Western Australia to assess the ecological and evolutionary mechanisms that may entail their persistence. Population genomic assays for this rabbitfish indicated little genetic differentiation between tropical residents and vagrants to temperate environments due to high migration rates, which were likely enhanced by the marine heatwave. DNA metabarcoding revealed a diverse diet for this species based on phytoplankton and algae, as well as an ability to feed on regional resources, including kelp. Irrespective of future climate scenarios, these macroalgae-consuming vagrants may self-recruit in temperate environments and further expand their geographic range by the year 2100. This expansion may compromise the health of the kelp forests that form Australia's Great Southern Reef. Overall, our study demonstrates that projected favourable climate conditions, continued large-scale genetic connectivity between populations, and diet versatility are key for tropical range-shifting fish to establish in temperate ecosystems.


Assuntos
Distribuição Animal , Mudança Climática , Herbivoria , Perciformes/fisiologia , Animais , Kelp , Oceanos e Mares , Clima Tropical , Austrália Ocidental
8.
Ecol Evol ; 11(13): 8683-8698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257922

RESUMO

Accurate identification of the botanical components of honey can be used to establish its geographical provenance, while also providing insights into honeybee (Apis mellifera L.) diet and foraging preferences. DNA metabarcoding has been demonstrated as a robust method to identify plant species from pollen and pollen-based products, including honey. We investigated the use of pollen metabarcoding to identify the floral sources and local foraging preferences of honeybees using 15 honey samples from six bioregions from eastern and western Australia. We used two plant metabarcoding markers, ITS2 and the trnL P6 loop. Both markers combined identified a total of 55 plant families, 67 genera, and 43 species. The trnL P6 loop marker provided significantly higher detection of taxa, detecting an average of 15.6 taxa per sample, compared to 4.6 with ITS2. Most honeys were dominated by Eucalyptus and other Myrtaceae species, with a few honeys dominated by Macadamia (Proteaceae) and Fabaceae. Metabarcoding detected the nominal primary source provided by beekeepers among the top five most abundant taxa for 85% of samples. We found that eastern and western honeys could be clearly differentiated by their floral composition, and clustered into bioregions with the trnL marker. Comparison with previous results obtained from melissopalynology shows that metabarcoding can detect similar numbers of plant families and genera, but provides significantly higher resolution at species level. Our results show that pollen DNA metabarcoding is a powerful and robust method for detecting honey provenance and examining the diet of honeybees. This is particularly relevant for hives foraging on the unique and diverse flora of the Australian continent, with the potential to be used as a novel monitoring tool for honeybee floral resources.

9.
Sci Rep ; 11(1): 3694, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580159

RESUMO

Groundwaters host vital resources playing a key role in the near future. Subterranean fauna and microbes are crucial in regulating organic cycles in environments characterized by low energy and scarce carbon availability. However, our knowledge about the functioning of groundwater ecosystems is limited, despite being increasingly exposed to anthropic impacts and climate change-related processes. In this work we apply novel biochemical and genetic techniques to investigate the ecological dynamics of an Australian calcrete under two contrasting rainfall periods (LR-low rainfall and HR-high rainfall). Our results indicate that the microbial gut community of copepods and amphipods experienced a shift in taxonomic diversity and predicted organic functional metabolic pathways during HR. The HR regime triggered a cascade effect driven by microbes (OM processors) and exploited by copepods and amphipods (primary and secondary consumers), which was finally transferred to the aquatic beetles (top predators). Our findings highlight that rainfall triggers ecological shifts towards more deterministic dynamics, revealing a complex web of interactions in seemingly simple environmental settings. Here we show how a combined isotopic-molecular approach can untangle the mechanisms shaping a calcrete community. This design will help manage and preserve one of the most vital but underrated ecosystems worldwide.

10.
Mol Ecol Resour ; 21(5): 1697-1704, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33580619

RESUMO

Metabarcoding of environmental DNA (eDNA) when coupled with high throughput sequencing is revolutionising the way biodiversity can be monitored across a wide range of applications. However, the large number of tools deployed in downstream bioinformatic analyses often places a challenge in configuration and maintenance of a workflow, and consequently limits the research reproducibility. Furthermore, scalability needs to be considered to handle the growing amount of data due to increase in sequence output and the scale of project. Here, we describe eDNAFlow, a fully automated workflow that employs a number of state-of-the-art applications to process eDNA data from raw sequences (single-end or paired-end) to generation of curated and noncurated zero-radius operational taxonomic units (ZOTUs) and their abundance tables. This pipeline is based on Nextflow and Singularity which enable a scalable, portable and reproducible workflow using software containers on a local computer, clouds and high-performance computing (HPC) clusters. Finally, we present an in-house Python script to assign taxonomy to ZOTUs based on user specified thresholds for assigning lowest common ancestor (LCA). We demonstrate the utility and efficiency of the pipeline using an example of a published coral diversity biomonitoring study. Our results were congruent with the aforementioned study. The scalability of the pipeline is also demonstrated through analysis of a large data set containing 154 samples. To our knowledge, this is the first automated bioinformatic pipeline for eDNA analysis using two powerful tools: Nextflow and Singularity. This pipeline addresses two major challenges in the analysis of eDNA data; scalability and reproducibility.


Assuntos
Biologia Computacional , Código de Barras de DNA Taxonômico , DNA Ambiental , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
11.
BMC Genomics ; 20(1): 385, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101009

RESUMO

BACKGROUND: Narrow-leafed lupin is an emerging crop of significance in agriculture, livestock feed and human health food. However, its susceptibility to various diseases is a major obstacle towards increased adoption. Sclerotinia sclerotiorum and Botrytis cinerea - both necrotrophs with broad host-ranges - are reported among the top 10 lupin pathogens. Whole-genome sequencing and comparative genomics are useful tools to discover genes responsible for interactions between pathogens and their hosts. RESULTS: Genomes were assembled for one isolate of B. cinerea and two isolates of S. sclerotiorum, which were isolated from either narrow-leafed or pearl lupin species. Comparative genomics analysis between lupin-derived isolates and others isolated from alternate hosts was used to predict between 94 to 98 effector gene candidates from among their respective non-conserved gene contents. CONCLUSIONS: Detection of minor differences between relatively recently-diverged isolates, originating from distinct regions and with hosts, may highlight novel or recent gene mutations and losses resulting from host adaptation in broad host-range fungal pathogens.


Assuntos
Adaptação Fisiológica , Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Especificidade de Hospedeiro , Virulência , Sequenciamento Completo do Genoma
12.
PLoS One ; 14(3): e0214201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921376

RESUMO

The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a 'selective sweep'. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated with geographical origin and to determine whether signatures of population-specific positive selection could be detected. To do this, we sequenced the genomes of 25 isolates of S. sclerotiorum collected from four different continents-Australia, Africa (north and south), Europe and North America (Canada and the northen United States) and conducted SNP based analyses of population structure and selective sweeps. Among the 25 isolates, there was evidence for two major population clusters. One of these consisted of 11 isolates from Canada, the USA and France (population 1), and the other consisted of nine isolates from Australia and one from Morocco (population 2). The rest of the isolates were genotypic outliers. We found that there was evidence of outcrossing in these two populations based on linkage disequilibrium decay. However, only a single candidate selective sweep was observed, and it was present in population 2. This sweep was close to a Major Facilitator Superfamily transporter gene, and we speculate that this gene may have a role in nutrient uptake from the host. The low abundance of selective sweeps in the S. sclerotiorum genome contrasts the numerous examples in the genomes of other fungal pathogens. This may be a result of its slow rate of evolution and low effective recombination rate due to self-fertilisation and vegetative reproduction.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia
13.
Plant Cell Environ ; 42(1): 6-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603775

RESUMO

Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty.


Assuntos
Mudança Climática , Produtos Agrícolas/genética , Fabaceae/genética , Genômica , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genômica/métodos , Melhoramento Vegetal/métodos
14.
Plant Cell Environ ; 42(1): 174-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677403

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Mutação INDEL/genética , Lupinus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Variação Genética/genética , Mutação INDEL/fisiologia , Desequilíbrio de Ligação/genética , Lupinus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Estações do Ano
15.
Theor Appl Genet ; 131(12): 2543-2554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225643

RESUMO

KEY MESSAGE: This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication. The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today's crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Genoma de Planta , Lupinus/genética , Produtos Agrícolas/genética , Domesticação , Desequilíbrio de Ligação , Região do Mediterrâneo , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética
16.
Theor Appl Genet ; 131(4): 887-901, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353413

RESUMO

KEY MESSAGE: This first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East-West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. Most grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes.


Assuntos
Variação Genética , Lupinus/genética , Adaptação Biológica/genética , Flores/fisiologia , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Região do Mediterrâneo , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...