Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113229, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815915

RESUMO

Bacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis. We find 111 BR-body-enriched proteins showing that BR-bodies are more complex than previously assumed. We identify five BR-body-enriched proteins that undergo RNA-dependent phase separation in vitro with a complex network of condensate mixing. We observe that some RNP condensates co-assemble with preferred directionality, suggesting that RNA may be trafficked through RNP condensates in an ordered manner to facilitate mRNA processing/decay, and that some BR-body-associated proteins have the capacity to dissolve the condensate. Altogether, these results suggest that a complex network of protein-protein and protein-RNA interactions controls BR-body phase separation and RNA processing.


Assuntos
Proteoma , RNA , Proteoma/metabolismo , Proteômica , Ribonucleoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Anal Methods ; 15(7): 916-924, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36373982

RESUMO

Complete enzymatic digestion of proteins for bottom-up proteomics is substantially improved by use of detergents for denaturation and solubilization. Detergents however, are incompatible with many proteases and highly detrimental to LC-MS/MS. Recently; filter-based methods have seen wide use due to their capacity to remove detergents and harmful reagents prior to digestion and mass spectrometric analysis. We hypothesized that non-specific protein binding to negatively charged silica-based filters would be enhanced by addition of lyotropic salts, similar to DNA purification. We sought to exploit these interactions and investigate if low-cost DNA purification spin-filters, 'Minipreps,' efficiently and reproducibly bind proteins for digestion and LC-MS/MS analysis. We propose a new method, Miniprep Assisted Proteomics (MAP), for sample preparation. We demonstrate binding capacity, performance, recovery and identification rates for proteins and whole-cell lysates using MAP. MAP recovered equivalent or greater protein yields from 0.5-50 µg analyses benchmarked against commercial trapping preparations. Nano UHPLC-MS/MS proteome profiling of lysates of Escherichia coli had 99.3% overlap vs. existing approaches and reproducibility of replicate minipreps was 98.8% at the 1% FDR protein level. Label Free Quantitative proteomics was performed and 91.2% of quantified proteins had a %CV <20% (2044/2241). Miniprep Assisted Proteomics can be performed in minutes, shows low variability, high recovery and proteome depth. This suggests a significant role for adventitious binding in developing new proteomics sample preparation techniques. MAP represents an efficient, ultra-low-cost alternative for sample preparation in a commercially obtainable device that costs ∼$0.50 (USD) per miniprep.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Detergentes/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Escherichia coli , DNA
3.
Sci Rep ; 12(1): 20641, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450877

RESUMO

Public health efforts to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic rely on accurate information on the spread of the disease in the community. Acute and surveillance testing has been primarily used to characterize the extent of the disease. However, obtaining a representative sample of the human population is challenging because of limited testing capacity and incomplete testing compliance. Wastewater-based epidemiology is an agnostic alternative to surveillance testing that provides an average sample from the population served by the treatment facility. We compare the performance of reverse transcription quantitative PCR (RT-qPCR) and reverse transcription digital droplet PCR (RT-dPCR) for analysis of SARS-CoV-2 RNA in a regional wastewater treatment facility in northern Indiana, USA from the earliest stages of the pandemic. 1-L grab samples of wastewater were clarified and concentrated. Nucleic acids were extracted from aliquots and analyzed in parallel using the two methods. Synthetic viral nucleic acids were used for method development and generation of add-in standard-curves. Both methods were highly sensitive in detecting SARS-CoV-2 in wastewater, with detection limits as low as 1 copy per 500 mL wastewater. RT-qPCR and RT-dPCR provided essentially identical coefficients of variation (s/[Formula: see text] = 0.15) for triplicate measurements made on wastewater samples taken on 16 days. We also observed a sevenfold decrease in viral load from a grab sample that was frozen at - 80 °C for 92 days compared to results obtained without freezing. Freezing samples before analysis should be discouraged. Finally, we found that treatment with a glycine release buffer resulted in a fourfold inhibition in RT-qPCR signal; treatment with a glycine release buffer also should be discouraged. Despite their prevalence and convenience in wastewater analysis, glycine release and freezing samples severely and additively (~ tenfold) degraded recovery and detection of SARS-CoV-2.


Assuntos
COVID-19 , Fabaceae , Ácidos Nucleicos , Humanos , Transcrição Reversa , SARS-CoV-2/genética , Águas Residuárias , Congelamento , Glicina , RNA Viral/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real
4.
PLoS Pathog ; 17(1): e1009124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411813

RESUMO

Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the "genetic proteome," how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genômica , Infecções por Mycobacterium/metabolismo , Mycobacterium/metabolismo , Proteoma/metabolismo , Humanos , Mycobacterium/genética , Mycobacterium/patogenicidade , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , Proteoma/análise
5.
Anal Chem ; 90(2): 1423-1430, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227110

RESUMO

For a patient with metastatic colorectal cancer there are limited clinical options aside from chemotherapy. Unfortunately, the development of new chemotherapeutics is a long and costly process. New methods are needed to identify promising drug candidates earlier in the drug development process. Most chemotherapies are administered to patients in combinations. Here, an in vitro platform is used to assess the penetration and metabolism of combination chemotherapies in three-dimensional colon cancer cell cultures, or spheroids. Colon carcinoma HCT 116 cells were cultured and grown into three-dimensional cell culture spheroids. These spheroids were then dosed with a common combination chemotherapy, FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) in a 3D printed fluidic device. This fluidic device allows for the dynamic treatment of spheroids across a semipermeable membrane. Following dosing, the spheroids were harvested for quantitative proteomic profiling to examine the effects of the combination chemotherapy on the colon cancer cells. Spheroids were also imaged to assess the spatial distribution of administered chemotherapeutics and metabolites with MALDI-imaging mass spectrometry. Following treatment, we observed penetration of folinic acid to the core of spheroids and metabolism of the drug in the outer proliferating region of the spheroid. Proteomic changes identified included an enrichment of several cancer-associated pathways. This innovative dosing device, along with the proteomic evaluation with iTRAQ-MS/MS, provides a robust platform that could have a transformative impact on the preclinical evaluation of drug candidates. This system is a high-throughput and cost-effective approach to examine novel drugs and drug combinations prior to animal testing.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Neoplasias do Colo/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Desenho de Equipamento , Células HCT116 , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Impressão Tridimensional , Proteômica/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...