Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(10): 5392-5404, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37854553

RESUMO

Reactive oxygen species (ROS) are key regulators in numerous pathological contexts, including cancer or inflammation. Their role is complex, which justifies the need for methods enabling their quantitative and time-resolved monitoring in vivo, in the perspective to profile tissues of individual patients. However, current ROS detection methods do not provide these features. Here, we propose a new method based on the imaging of lanthanide-ion nanoparticles (GdVO4:Eu), whose photoluminescence is modulated by the surrounding ROS concentration. We monitored their luminescence after intradermic injection in a mouse ear submitted to an inflammation-inducing topical stimulus. Based on this approach, we quantified the ROS concentration after inflammation induction and identified a two-step kinetics of ROS production, which may be attributed to the response of resident immune cells and their further recruitment at the inflammation locus.

2.
Nanoscale ; 13(35): 14814-14824, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533151

RESUMO

Lateral Flow Assays (LFAs) have been extensively used on-site to rapidly detect analytes, possibly in complex media. However, standard gold nanoparticle-based LFAs lack sensitivity and cannot provide quantitative measurements with high accuracy. To overcome these limitations, we image lanthanide-doped nanoparticles (YVO4:Eu 40%) as new luminescent LFA probes, using a homemade reader coupled to a smartphone and propose an original image analysis allowing strip quantification regardless of the shape of the test band signal. This method is demonstrated for the detection of staphylococcal enterotoxins SEA, SEG, SEH, and SEI. A systematic comparison to state-of-the-art gold nanoparticle-based LFA revealed an analytical sensitivity enhancement of at least one order of magnitude. We furthermore provided measurements of absolute toxin concentration over two orders of magnitude and demonstrated simultaneous quantitative detection of multiple toxins with unaltered sensitivity. In particular, we reached concentrations 100 times lower than the ones reported in the literature for on-site multiplexed LFA targeting enterotoxins. Altogether, these results highlight that our luminescent nanoparticle-based method provides a powerful and versatile on-site framework to detect multiple biomolecules with sensitivity approaching that obtained by ELISA. This paves the way to a change of paradigm in the field of analytical immunoassays by providing fast in situ quantitative high sensitivity detection of biomarkers or pathogens.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Enterotoxinas , Ouro , Imunoensaio
3.
Colloids Surf B Biointerfaces ; 178: 337-345, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897431

RESUMO

The role of pulmonary surfactant is to reduce the surface tension in the lungs and to facilitate breathing. Surfactant replacement therapy (SRT) aims at bringing a substitute by instillation into the airways, a technique that has proven to be efficient and lifesaving for preterm infants. Adapting this therapy to adults requires to scale the administered dose to the patient body weight and to increase the lipid concentration, whilst maintaining its surface and flow properties similar. Here, we exploit a magnetic wire-based microrheology technique to measure the viscosity of the exogenous pulmonary surfactant Curosurf® in various experimental conditions. The Curosurf® viscosity is found to increase exponentially with lipid concentration following the Krieger-Dougherty law of colloids. The Krieger-Dougherty behavior also predicts a divergence of the viscosity at the liquid-to-gel transition. For Curosurf® the transition concentration is found close to the concentration at which it is formulated (117 g L-1versus 80 g L-1). This outcome suggests that for SRT the surfactant rheological properties need to be monitored and kept within a certain range. The results found here could help in producing suspensions for respiratory distress syndrome adapted to adults. The present work also demonstrates the potential of the magnetic wire microrheology technique as an accurate tool to explore biological soft matter dynamics.


Assuntos
Surfactantes Pulmonares/química , Tensoativos/química , Microscopia Crioeletrônica , Viscosidade
4.
Soft Matter ; 14(28): 5764-5774, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29989135

RESUMO

Inhaled nanoparticles traveling through the airways are able to reach the respiratory zone of the lungs. In such an event, the incoming particles first come into contact with the liquid lining the alveolar epithelium, the pulmonary surfactant. The pulmonary surfactant is composed of lipids and proteins that are assembled into large vesicular structures. The question of the nature of the biophysicochemical interaction with the pulmonary surfactant is central to understand how the nanoparticles can cross the air-blood barrier. Here we explore the phase behavior of sub-100 nm particles and surfactant substitutes under controlled conditions. Three types of surfactant mimetics, including the exogenous substitute Curosurf®, a drug administered to infants with respiratory distress syndrome, are tested together with aluminum oxide (Al2O3), silicon dioxide (SiO2) and polymer (latex) nanoparticles. The main result here is the observation of spontaneous nanoparticle-vesicle aggregation induced by coulombic attraction. The role of the surface charges is clearly established. We also evaluate the supported lipid bilayer formation recently predicted and find that in the cases studied these structures do not occur. Pertaining to the aggregate internal structure, fluorescence microscopy shows that the vesicles and particles are intermixed at the nano- to microscale. With particles acting as stickers between vesicles, it is anticipated that the presence of inhaled nanomaterials in the alveolar spaces could significantly modify the interfacial and bulk properties of the pulmonary surfactant and interfere with lung physiology.

5.
Nanoscale ; 9(39): 14967-14978, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28953277

RESUMO

Studies have shown that following exposure to particulate matter, ultrafine fractions (<100 nm) may deposit along the respiratory tract down to the alveolar region. To assess the effects of nanoparticles on the lungs, it is essential to address the question of their biophysicochemical interaction with the different pulmonary environments, including the lung lining fluids and the epithelia. Here we examine one of these interactive scenarios and study the role of supported lipid bilayers (SLB) in the effect of 40 nm fluorescent silica particles on living cells. We first study the particle phase behavior in the presence of Curosurf®, a pulmonary surfactant substitute used in replacement therapies. It is found that Curosurf® vesicles interact strongly with the nanoparticles, but do not spontaneously form SLBs. To achieve this goal, we use sonication to reshape the vesicular membranes and induce lipid fusion around the particles. Centrifugal sedimentation and electron microscopy are carried out to determine the optimum coating conditions and layer thickness. We then explore the impact of surfactant SLBs on the cytotoxic potential and interactions towards a malignant epithelial cell line. All in vitro assays indicate that SLBs mitigate the particle toxicity and internalization rates. In the cytoplasm, the particle localization is also strongly coating dependent. It is concluded that SLBs profoundly affect cellular interactions and functions in vitro and could represent an alternative strategy for particle coating. The current data also shed some light on the potential mechanisms pertaining to the particle or pathogen transport through the air-blood barrier.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Nanopartículas , Surfactantes Pulmonares/química , Dióxido de Silício , Células A549 , Humanos , Bicamadas Lipídicas , Tamanho da Partícula
6.
J Phys Chem B ; 121(10): 2299-2307, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28225273

RESUMO

There is currently a renewed interest for improving household and personal-care formulations to provide more environment-friendly products. Fabric conditioners used as softeners have to fulfill a number of stability and biodegradability requirements. They should also display significant adsorption on cotton under the conditions of use. The quantification of surfactant adsorption remains however difficult because the fabric-woven structure is complex and deposited amounts are generally small. Here, we propose a method to evaluate cellulose-surfactant interactions with increased detection sensitivity. The method is based on the use of cellulose nanocrystals (CNCs) in lieu of micron-sized fibers or yarns, combined with different techniques, including light scattering, optical and electron microscopy, and electrophoretic mobility. CNCs are rod-shaped nanoparticles in the form of 200 nm laths that are negatively charged and can be dispersed in bulk solutions. In this work, we use a double-tailed cationic surfactant present in fabric softener. Results show that the surfactants self-assemble into unilamellar, multivesicular, and multilamellar vesicles, and the interaction with CNCs is driven by electrostatics. Mutual interactions are strong and lead to the formation of large-scale aggregates, where the vesicles remain intact at the cellulose surface. The technique developed here could be exploited to rapidly assess the fabric conditioner efficiency obtained by varying the nature and content of their chemical additives.

7.
J Colloid Interface Sci ; 475: 36-45, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153216

RESUMO

The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects.

8.
Langmuir ; 31(26): 7346-54, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26075579

RESUMO

We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering, and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance that could change the interactions of the particles with lung cells.


Assuntos
Óxido de Alumínio/química , Fenômenos Químicos , Nanopartículas/química , Surfactantes Pulmonares/química , Concentração de Íons de Hidrogênio , Fosfolipídeos/química , Eletricidade Estática , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA