Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Clin Case Rep ; 12(5): e8878, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689686

RESUMO

Key Clinical Message: Parry-Romberg syndrome is characterized by progressive dystrophy in one half of the face, which usually begins in childhood. Correct and timely diagnosis of this disease, as well as a multidisciplinary approach and timely surgical treatment to minimize the psychological effects and improve the patient's appearance are of particular importance. Abstract: Parry-Romberg syndrome is characterized by progressive dystrophy or loss of subcutaneous tissue in one half of the face, which usually begins in childhood and continues with skin changes, and can also be associated with linear scleroderma. Although this disease has been known for more than 150 years, its exact cause and pathogenesis are not well understood. The clinical feature of Parry-Romberg syndrome that makes it possible to diagnose is unilateral idiopathic facial atrophy. The reported case is a 14-year-old boy who suffered from hemifacial atrophy of the frontal area since he was 7 years old was referred to a plastic and cosmetic surgery specialist and underwent surgery without systemic symptoms and in the inactive phase of the disease. Correct and timely diagnosis of this disease, as well as a multidisciplinary approach and timely and appropriate surgical treatment to minimize the psychological effects and improve the patient's appearance are of particular importance.

2.
Protein J ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662183

RESUMO

Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure-function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from E. coli O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in silico modeling and the informed design of next-generation enzybiotic treatments.

3.
Q Rev Biophys ; 57: e6, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619322

RESUMO

A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.


Assuntos
Química Click , Desenho de Fármacos , Rotulagem de Produtos , Processamento de Proteína Pós-Traducional , Tecnologia
4.
Biochimie ; 222: 151-168, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494110

RESUMO

To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.

5.
Sci Rep ; 14(1): 6912, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519489

RESUMO

In pulmonary inflammation diseases, like COVID-19, lung involvement and inflammation determine the treatment regime. Respiratory inflammation is typically arisen due to the cytokine storm and the leakage of the vessels for immune cells recruitment. Currently, such a situation is detected by the clinical judgment of a specialist or precisely by a chest CT scan. However, the lack of accessibility to the CT machines in many poor medical centers as well as its expensive service, demands more accessible methods for fast and cheap detection of lung inflammation. Here, we have introduced a novel method for tracing the inflammation and lung involvement in patients with pulmonary inflammation, such as COVID-19, by a simple electrolyte detection in their sputum samples. The presence of the electrolyte in the sputum sample results in the fern-like structures after air-drying. These fern patterns are different in the CT positive and negative cases that are detected by an AI application on a smartphone and using a low-cost and portable mini-microscope. Evaluating 160 patient-derived sputum sample images, this method demonstrated an interesting accuracy of 95%, as confirmed by CT-scan results. This finding suggests that the method has the potential to serve as a promising and reliable approach for recognizing lung inflammatory diseases, such as COVID-19.


Assuntos
COVID-19 , Smartphone , Humanos , Redes Neurais de Computação , COVID-19/diagnóstico , Inflamação , Testes Imediatos , Eletrólitos , Teste para COVID-19
6.
Nurs Open ; 11(3): e2117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429918

RESUMO

AIM: This study aims to define and investigate characteristics, antecedents, and consequences of the concept of family engagement in caring for patients with infectious diseases hospitalised in intensive care units. DESIGN: This is a three-phase hybrid model study (theoretical, fieldwork, and analytical phase). METHODS: The York University Guidelines were used in the theoretical phase, and ultimately, 16 pieces of literature related to the subject under study from 2011 to 2021 were reviewed. The content analysis was used for fieldwork phases; eight participants were interviewed. Then, the theoretical and fieldwork findings were compared, integrated, and analysed. RESULTS: This concept has characteristics such as; awareness, belief, perception, and willingness of the nurse to engage the family; a sense of responsibility, willingness, and sacrifice of the family; the physical or virtual presence of the family; triangular interaction between the nurse, patient, and family; perception and identifying the goals; education and information transfer; team collaboration; delegation of responsibility to the family; decision making; and protection of the family. Antecedents include the availability of infrastructure; patient, family, and nurse conditions; and the quality implementation of engagement. The consequences include positive consequences related to the patient, family, nursing, and society, as well as some negative consequences. This study provided a comprehensive perception of family engagement in the care of patients with infectious diseases in intensive care units and defined it more clearly, showing its characteristics, antecedents, and consequences. PATIENT OR PUBLIC CONTRIBUTION: Eight participants were interviewed, including five nurses, two family caregivers, and one patient.


Assuntos
Doenças Transmissíveis , Pacientes , Humanos , Escolaridade , Unidades de Terapia Intensiva , Pesquisa Qualitativa
7.
Sci Rep ; 14(1): 7353, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548822

RESUMO

The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.


Assuntos
Cardiomiopatias , Catarata , Cristalinas , Humanos , Catarata/genética , Cristalinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/metabolismo , Prolina/genética , Estrutura Secundária de Proteína
8.
Int J Biol Macromol ; 262(Pt 2): 129953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325678

RESUMO

Tau cleavage has been shown to have a significant effect on protein aggregation. Tau truncation results in the formation of aggregation-prone fragments leading to toxic aggregates and also causes the formation of harmful fragments that do not aggregate. Thus, targeting proteolysis of tau would be beneficial for the development of therapeutics for Alzheimer's disease and related tauopathies. In this study, amino-terminal quantification and ThT fluorimetry were respectively used to analyze the kinetics of tau fragmentation and fibril formation. SDS-PAGE analysis of tau protein incubated with a disulfide-reducing agent demonstrated that the cysteines of tau have a crucial role in the fibrillation and autoproteolysis. However, the structures converted to amyloid fibrils were different with conformations that led to autoproteolysis. The quantification of the amino terminal indicated that the double-disulfide parallel structures formed in the presence of heparin did not have protease activity. The survey of possible tau disulfide-mediated dimer configurations suggested that the non-register single disulfide bound conformations were involved in the tau autoproteolysis process. Moreover, the inhibition of autoproteolysis resulted in the increment of aggregation rate; hence it seems that the tau auto-cleavage is the cellular defense mechanism against protein fibrillation.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/química , Amiloide/química , Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Dissulfetos
9.
Int J Biol Macromol ; 263(Pt 1): 130223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365146

RESUMO

In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Proteínas tau/química , Lisina/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Heparina/metabolismo , Doença de Alzheimer/metabolismo
10.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368978

RESUMO

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Assuntos
Cobre , Cadeia B de alfa-Cristalina , Humanos , Cobre/química , Cadeia B de alfa-Cristalina/química , Chaperonas Moleculares , Homeostase , Íons
11.
Biochim Biophys Acta Gen Subj ; 1868(4): 130579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307443

RESUMO

αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased ß-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).


Assuntos
Cardiomiopatias , Escherichia coli , Humanos , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Cardiomiopatias/genética , Escherichia coli/metabolismo , Proteínas Mutantes/química , Mutação
12.
J Mater Sci Mater Med ; 35(1): 4, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206473

RESUMO

This paper focuses on the synthesis of nano-oxali-palladium coated with turmeric extract (PdNPs) using a green chemistry technique based on the reduction in the Pd (II) complex by phytochemicals inherent in turmeric extract. PdNPs were examined and characterized using Field Emission Scanning Electron Microscopy (FESEM), Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR), and Atomic Force Microscopy (AFM). Using different spectroscopic and molecular dynamics simulations, a protein-binding analysis of the produced nanoparticle was conducted by observing its interaction with human serum albumin (HSA). Lastly, the cytotoxic effects and apoptotic processes of PdNPs were studied against the HCT116 human colorectal cell line using the MTT assay and flow cytometry tests. According to the findings, PdNPs with spherical and homogenous morphology and a size smaller than 100 nm were generated. In addition, they can induce apoptosis in colorectal cancer cells in a dose-dependent manner with a lower Cc50 (78 µL) than cisplatin and free oxali-palladium against HCT116 cells. The thermodynamic characteristics of protein binding of nanoparticles with HSA demonstrated that PdNPs had a great capacity for quenching and interacting with HSA through hydrophobic forces. In addition, molecular dynamics simulations revealed that free oxali-palladium and PdNP attach to the same area of HSA via non-covalent interactions. It is conceivable to indicate that the synthesized PdNPs are a potential candidate for the construction of novel, nature-based anticancer treatments with fewer side effects and a high level of eco-friendliness.


Assuntos
Neoplasias Colorretais , Nanopartículas , Oxalidaceae , Humanos , Ligação Proteica , Paládio , Apoptose , Neoplasias Colorretais/tratamento farmacológico
13.
Int J Biol Macromol ; 255: 128294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992931

RESUMO

Advanced glycation end products are the most important species of glycation pathway, and cause disorders such as oxidative stress and diabetes. Sulfonamide compounds, which are generally known as widespread inhibitors, are potential agents used in different drug products, which can readily enter biological matrices. In the present work, the structure and activity of human carbonic anhydrase II studied in the presence of glucose as well as four sulfonamide agents from different views. These included enzyme kinetics, free lysine content, fluorescence spectroscopy, circular dichroism, and ROS measurement. Our results indicated that upon glycation, the structure of HCA II collapses and 8 to 13 lysine residues will be more available based on ligand incubation. Secondary and tertiary structural changes were also observed in the presence and absence of sulfonamide agents using fluorescence and circular dichroism methods, respectively. These spectroscopic data also showed a remarkable increase in hydrophobicity and decrease in α-helix contents during glycation, especially after 35 days of incubation. ROS assay was studied in the presence of glucose and sulfonamide compounds, that demonstrated the role of sulfonamide compounds in ROS formation in the presence of glucose in a synergistic manner. Overall, our data indicated that sulfonamides act as a stimulant factor upon prolonged interaction with HCA II and may intensify the complications of some disorders, such as diabetes and other conformational diseases.


Assuntos
Anidrase Carbônica II , Diabetes Mellitus , Humanos , Anidrase Carbônica II/química , Sulfonamidas/química , Espécies Reativas de Oxigênio , Reação de Maillard , Lisina , Dicroísmo Circular , Glucose , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura Molecular
14.
Int J Biol Macromol ; 254(Pt 3): 127933, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939764

RESUMO

αB-Crystallin (αB-Cry) is expressed in many tissues, and mutations in this protein are linked to various diseases, including cataracts, Alzheimer's disease, Parkinson's disease, and several types of myopathies and cardiomyopathies. The p.D109G mutation, which substitutes a conserved aspartate residue involved in the interchain salt bridges, with glycine leads to the development of both restrictive cardiomyopathy (RCM) and skeletal myopathy. In this study, we generated this mutation in the α-Cry domain (ACD) which is crucial for forming the active chaperone dimeric state, using site-directed mutagenesis. After inducing expression in the bacterial host, we purified the mutant and wild-type recombinant proteins using anion exchange chromatography. Various spectroscopic evaluations revealed significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry caused by this mutation. Furthermore, this pathogenic mutation led to the formation of protein oligomers with larger sizes than those of the wild-type protein counterpart. The mutant protein also exhibited increased chaperone activity and decreased chemical, thermal, and proteolytic stability. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and fluorescence microscopy (FM) demonstrated that p.D109G mutant protein is more prone to forming amyloid aggregates. The misfolding associated with the p.D109G mutation may result in abnormal interactions of human αB-Cry with its natural partners (e.g., desmin), leading to the formation of protein aggregates. These aggregates can interfere with normal cellular processes and may contribute to muscle cell dysfunction and damage, resulting in the pathogenic involvement of the p.D109G mutant protein in restrictive cardiomyopathy and skeletal myopathy.


Assuntos
Cardiomiopatia Restritiva , Cristalinas , Doenças Musculares , Humanos , Cristalinas/química , Mutação , Doenças Musculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/química
15.
Biomater Adv ; 156: 213698, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006785

RESUMO

The transfusion of donor red blood cells (RBCs) is seriously hampered by important drawbacks that include limited availability and portability, the requirement of being stored in refrigerated conditions, a short shelf life or the need for RBC group typing and crossmatching. Thus, hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) which make use of the main component of RBCs and the responsible protein for O2 transport, hold a lot of promise in modern transfusion and emergency medicine. Despite the great progress achieved, it is still difficult to create HBOCs with a high Hb content to attain the high O2 demands of our body. Herein a metal-phenolic self-assembly approach that can be conducted in water and in one step to prepare nanoparticles (NPs) fully made of Hb (Hb-NPs) is presented. In particular, by combining Hb with polyethylene glycol, tannic acid (TA) and manganese ions, spherical Hb-NPs with a uniform size around 350-525 nm are obtained. The functionality of the Hb-NPs is preserved as shown by their ability to bind and release O2 over multiple rounds. The binding mechanism of TA and Hb is thoroughly investigated by UV-vis absorption and fluorescence spectroscopy. The binding site number, apparent binding constant at two different temperatures and the corresponding thermodynamic parameters are identified. The results demonstrate that the TA-Hb interaction takes place through a static mechanism in a spontaneous process as shown by the decrease in Gibbs free energy. The associated increase in entropy suggests that the TA-Hb binding is dominated by hydrophobic interactions.


Assuntos
Substitutos Sanguíneos , Nanopartículas , Oxigênio/química , Oxigênio/metabolismo , Substitutos Sanguíneos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Nanopartículas/química , Metais
16.
Protein J ; 43(1): 24-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017315

RESUMO

Angiotensin-converting enzyme 2 (ACE2) has a specific interaction with the coronavirus spike protein, enabling its entry into human cells. This membrane enzyme converts angiotensin II into angiotensin 1-7, which has an essential role in protecting the heart and improving lung function. Many therapeutic properties have been attributed to the human recombinant ACE2 (hrACE2), especially in combating complications related to diabetes mellitus and hypertension, as well as, preventing the coronavirus from entering the target tissues. In the current study, we designed an appropriate gene construct for the hybrid protein containing the ACE2 catalytic subunit and the B subunit of cholera toxin (CTB-ACE2). This structural feature will probably help the recombinant hybrid protein enter the mucosal tissues, including the lung tissue. Optimization of this hybrid protein expression was investigated in BL21 bacterial host cells. Also, the hybrid protein was identified with an appropriate antibody using the ELISA method. A large amount of the hybrid protein (molecular weight of ~ 100 kDa) was expressed as the inclusion body when the induction was performed in the presence of 0.25 mM IPTG and 1% sucrose for 10 h. Finally, the protein structural features were assessed using several biophysical methods. The fluorescence emission intensity and oligomeric size distribution of the CTB-ACE2 suggested a temperature-dependent alteration. The ß-sheet and α-helix were also dominant in the hybrid protein structure, and this protein also displays acceptable chemical stability. In overall, according to our results, the efficient expression and successful purification of the CTB-ACE2 protein may pave the path for its therapeutic applications against diseases such as covid-19, diabetes mellitus and hypertension.


Assuntos
Diabetes Mellitus , Hipertensão , Humanos , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Domínio Catalítico
17.
Arch Med Sci Atheroscler Dis ; 8: e89-e95, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089159

RESUMO

Introduction: Cytokines are synthesized and released by immune system cells and mediate critical immune responses. Aging is associated with increased serum levels of some pro-inflammatory cytokines. A positive correlation between the concentration of several cytokines and blood pressure has been reported; higher cytokine concentrations may be related to the underlying causes of hypertension through the effects of inflammatory responses or as an independent aetiology for hypertension. The aim of this study is to assess the relationship between the serum levels of inflammatory cytokines and growth factors, with biochemical and anthropometric characteristics, in healthy Iranian subjects. Material and methods: Anthropometric measurements and blood sampling were performed in 103 healthy Iranian participants. Anthropometric measurements, blood pressure, fasting blood glucose (FBG), and lipid profile were measured in these participants. Twelve serum cytokines/growth factors (MCP-1, TNF-α, EGF, IFN-γ, VEGF, IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-8, and IL-10) were measured by cytokine biochip array. Results: FBG was positively associated with serum interleukin (IL) 2 (IL-2), IL-4, and IL-1α (p = 0.044, < 0.001, and = 0.017, respectively). Serum epithelial growth factor and IL-4 were positively associated with age (p < 0.001). Interleukin-8 was inversely associated with systolic blood pressure (p = 0.002) and gender (p = 0.028). There was a positive association between vascular endothelial growth factor and high-density lipoprotein (p = 0.007). The serum levels of interferon-γ and tumour necrosis factor-α were positively associated with serum triglycerides (p = 0.018 and 0.006, respectively). Serum interferon-γ and IL-1ß levels were positively associated with hip circumference (p = 0.029 and 0.001, respectively). Conclusions: There are associations between various pro- and anti-inflammatory cytokines and growth factors in serum and age, sex, hip circumference and several biochemical measurements.

18.
Avicenna J Phytomed ; 13(5): 488-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089419

RESUMO

Objective: Mint and chamomile can effectively reduce the gastric residual volume (GRV). This study aimed to determine the effect of mint extract and chamomile drops on the GRV of trauma patients under mechanical ventilation and nasogastric tube feeding in the intensive care unit. Materials and Methods: This study was a triple-blinded randomized clinical trial with a 2×2 crossover design. Eighty patients were randomly divided to receive mint extract and chamomile drops. Five drops of mint extract and 11 drops of chamomile were gavaged every 6 hr. GRV was measured using a syringe-aspiration method before and 3 hr after each intervention. After a 24-hour washout period, the two groups changed places. Results: In the first phase of the study, before the interventions, the GRV in the mint and chamomile groups was 14.60±7.89 and 13.79±7.12 ml, and after the interventions were 8.13±6.31 and 6.61±4.68 ml, respectively. In the study's second phase, before the interventions, the GRV in the mint and chamomile groups was 10.03±4.93 and 11.46±7.17 ml and after the interventions, GRV was 4.97±4.05 and 6.98±4.60 ml, respectively. The difference in the GRV before and after the intervention was not significantly different between the two groups. Both herbal drugs effectively reduced the GRV (p=0.382). Conclusion: Mint extract and chamomile drops are similarly effective in reducing the GRV in trauma patients under mechanical ventilation and nasogastric tube (NGT) feeding in the intensive care unit.

19.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003431

RESUMO

The CRISPR genome editing technology is a crucial tool for enabling revolutionary advancements in plant genetic improvement. This review shows the latest developments in CRISPR/Cas9 genome editing system variants, discussing their benefits and limitations for plant improvement. While this technology presents immense opportunities for plant breeding, it also raises serious biosafety concerns that require careful consideration, including potential off-target effects and the unintended transfer of modified genes to other organisms. This paper highlights strategies to mitigate biosafety risks and explores innovative plant gene editing detection methods. Our review investigates the international biosafety guidelines for gene-edited crops, analyzing their broad implications for agricultural and biotechnology research and advancement. We hope to provide illuminating and refined perspectives for industry practitioners and policymakers by evaluating CRISPR genome enhancement in plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Contenção de Riscos Biológicos , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética
20.
Biochimie ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931794

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that reduces postprandial glycemic excursions by enhancing insulin secretion. In this study, a new dimeric GLP-1 analogue (GLP-1cpGLP-1) was designed by inserting human insulin C-peptide (CP) in the middle of a dimer of [Gly8] GLP-1 (7-36). Then, the dimeric incretin (GLP-1cpGLP-1) was ligated to human αB-crystallin (αB-Cry) to create a hybrid protein, abbreviated as αB-GLP-1cpGLP-1. The constructed gene was well expressed in the bacterial host system. After specific chemical release from the hybrid protein, the dimeric incretin was purified by size exclusion chromatography (SEC). Finally, the RP-HPLC analysis indicated a purity of >99 % for the dimeric incretin. The secondary structure assessments by various spectroscopic methods, and in silico analysis suggested that the dimeric incretin has α-helical rich structure. The dynamic light scattering (DLS) analysis indicates that our dimeric incretin forms large oligomeric structures. This incretin analogue significantly reduced blood glucose levels in both healthy and diabetic mice while effectively triggering insulin release. The size exclusion HPLC also indicates the interaction of the new incretin analogue with human serum albumin, the main carrier protein in the bloodstream. Consistent with the results obtained from the biological activity assessments, this significant interaction indicates its potential as a viable therapeutic agent with a long-lasting effect. The results of our research represent a significant breakthrough in the successful design of an active incretin dimer capable of effectively controlling blood sugar levels and inducing insulin secretion in the realm of diabetes treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...