Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2388, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765077

RESUMO

We report a reduction in motion for suspended seismic-isolation platforms in a gravitational wave detector prototype facility. We sense the distance between two seismic-isolation platforms with a suspension platform interferometer and the angular motion with two optical levers. Feedback control loops reduce the length changes between two platforms separated by [Formula: see text] to [Formula: see text] at [Formula: see text], and the angular motion of each platform is reduced to [Formula: see text] at [Formula: see text]. As a result, the length fluctuations in a suspended optical resonator on top of the platforms is reduced by three orders of magnitude. This result is of direct relevance to gravitational wave detectors that use similar suspended optics and seismic isolation platforms.

2.
Rev Sci Instrum ; 89(12): 121501, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599580

RESUMO

Compact interferometers, called phasemeters, make it possible to operate over a large range while ensuring a high resolution. Such performance is required for the stabilization of large instruments dedicated to experimental physics such as gravitational wave detectors. This paper aims at presenting the working principle of the different types of phasemeters developed in the literature. These devices can be classified into two categories: homodyne and heterodyne interferometers. Improvement of resolution and accuracy has been studied for both devices. Resolution is related to the noise sources that are added to the signal. Accuracy corresponds to distortion of the phase measured with respect to the real phase, called non-linearity. The solutions proposed to improve the device resolution and accuracy are discussed based on a comparison of the reached resolutions and of the residual non-linearities.

3.
Opt Express ; 22(9): 11351-66, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921832

RESUMO

We experimentally demonstrate an inter-satellite laser link acquisition scheme for GRACE Follow-On. In this strategy, dedicated acquisition sensors are not required-instead we use the photodetectors and signal processing hardware already required for science operation. To establish the laser link, a search over five degrees of freedom must be conducted (± 3 mrad in pitch/yaw for each laser beam, and ± 1 GHz for the frequency difference between the two lasers). This search is combined with a FFT-based peak detection algorithm run on each satellite to find the heterodyne beat note resulting when the two beams are interfered. We experimentally demonstrate the two stages of our acquisition strategy: a ± 3 mrad commissioning scan and a ± 300 µrad reacquisition scan. The commissioning scan enables each beam to be pointed at the other satellite to within 142 µrad of its best alignment point with a frequency difference between lasers of less than 20 MHz. Scanning over the 4 alignment degrees of freedom in our commissioning scan takes 214 seconds, and when combined with sweeping the laser frequency difference at a rate of 88 kHz/s, the entire commissioning sequence completes within 6.3 hours. The reacquisition sequence takes 7 seconds to complete, and optimizes the alignment between beams to allow a smooth transition to differential wavefront sensing-based auto-alignment.

4.
Opt Lett ; 36(23): 4680-2, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139282

RESUMO

We report on the performance of a dual-wavelength resonant, traveling-wave optical parametric oscillator to generate squeezed light for application in advanced gravitational-wave interferometers. Shot noise suppression of 8.6±0.8 dB was measured across the detection band of interest to Advanced LIGO, and controlled squeezing measured over 5900 s. Our results also demonstrate that the traveling-wave design has excellent intracavity backscattered light suppression of 47 dB and incident backscattered light suppression of 41 dB, which is a crucial design issue for application in advanced interferometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...