Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 434, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120640

RESUMO

Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM). However, reduced productivity and growth rate have been linked to miR-21 overexpression in CHO cells. The current study aimed to engineer a recombinant CHO (rCHO) cell using the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system coupled with the Bxb1 recombinase-mediated cassette exchange (RMCE) to express a circular miR-21 decoy (CM21D) with five bulged binding sites for miR-21 sponging. Implementing the ribonucleoprotein (RNP) delivery method, a landing pad was inserted into the genome utilizing the CRIS-PITCh technique. Subsequently, the CM21D cassette flanked by Bxb1 attB was then retargeted into the integrated landing pad using the RMCE/Bxb1 system. This strategy raised the targeting efficiency by 1.7-fold, and off-target effects were decreased. The miR-21 target genes (Pdcd4 and Atp11b) noticed a significant increase in expression upon the miR-21 sponging through CM21D. Following the expression of CM21D, rCHO cells showed a substantial decrease in doubling time and a 1.3-fold increase in growth rate. Further analysis showed an increased yield of hrsACE2, a secretory recombinant protein, by 2.06-fold. Hence, we can conclude that sponging-induced inhibition of miR-21 may lead to a growth rate increase that could be linked to increased CHO cell productivity. For industrial cell lines, including CHO cells, an increase in productivity is crucial. The results of our research indicate that CM21D is an auspicious CHO engineering approach. KEY POINTS: • CHO is an ideal host cell line for producing industrial therapeutics manufacturing, and miR-21 is downregulated in CHO cells, which produce recombinant proteins. • The miR-21 target genes noticed a significant increase in expression upon the miR-21 sponging through CM21D. Additionally, sponging of miR-21 by CM21D enhanced the growth rate of CHO cells. • Productivity and growth rate were increased in CHO cells expressing recombinant hrs-ACE2 protein after CM21D knocking in.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , MicroRNAs , Células CHO , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Engenharia Celular/métodos , Edição de Genes/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinases/genética , Recombinases/metabolismo , Cricetinae
2.
Sci Rep ; 14(1): 1244, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218954

RESUMO

Coronary artery disease (CAD) is the major cause of mortality in the world. Premature development of CAD can be attributed to women under 55 and men under 45. Many genetic factors play a part in premature CAD. Among them, ANRIL, a long noncoding RNA is located at the 9p21 risk locus, and its expression seems to be correlated with CAD. In the current study, premature CAD and control blood samples, with and without Type 2 Diabetes (T2D), were genotyped for six SNPs at the 9p21 locus. Additionally, ANRIL serum expression was assessed in both groups using real-time PCR. It was performed using different primers targeting exons 1, 5-6, and 19. The χ2 test for association, along with t-tests and ANOVA, was employed for statistical analysis. In this study, we did not find any significant correlation between premature coronary artery disease and rs10757274, rs2383206, rs2383207, rs496892, rs10757278 and rs10738605. However, a lower ANRIL expression was correlated with each SNP risk genotype. Despite the correlation between lower ANRIL expression and CAD, Type 2 diabetes was associated with higher ANRIL expression. Altogether, the correlation between ANRIL expression and the genotypes of the studied SNPs indicated that genetic variants, even those in intronic regions, affect long noncoding RNA expression levels. In conclusion, we recommend combining genetic variants with expression analysis when developing screening strategies for families with premature CAD. To prevent the devastating outcomes of CAD in young adults, it is crucial to discover noninvasive genetic-based screening tests.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Feminino , Humanos , Masculino , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Electron. j. biotechnol ; 16(1): 4-4, Jan. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-663683

RESUMO

Background: Human alpha 1-antitrypsin (AAT) is a potent inhibitor of multiple serine proteases, and protects tissues against their harmful effects. Individuals with reduced or abnormal production of this inhibitor need intravenous administration of exogenous protein. In this study, we employed the methylotrophic (methanol utilizing) yeast Pichia pastoris (P. pastoris) as a preferential host for efficient production and secretion of recombinant AAT. Furthermore, we examined different strategies to maximize the yield of the secreted protein. Results: Our findings revealed that optimizing the codon usage of AAT gene for P. pastoris had positive effects on the level of secreted AAT under the control of inducible alcohol oxidase 1 (AOX1) and constitutive glycerol aldehyde phosphate dehydrogenase (GAP) promoters. Compared to AOX1, the GAP promoter increased the yield of AAT by more than two fold. It was also demonstrated that the human AAT native signal sequence was more effective than the well-known yeast signal sequence, alpha mating factor (α-MF). Doubling gene dosage nearly doubled the production of AAT, though dosages exceeding this limit had negative effects on the yield. Conclusion: P. pastoris is shown to be an efficient expression system for production of recombinant and biologically active AAT. Also different strategies could be used to elevate the amount of this secretable protein.


Assuntos
Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/metabolismo , Transformação Genética , DNA/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , DNA Complementar , Inibidores Enzimáticos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA