Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37631262

RESUMO

Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.

2.
Biology (Basel) ; 12(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37372067

RESUMO

The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/ß-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.

3.
Chem Biol Interact ; 375: 110428, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36868496

RESUMO

Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure. However, the mechanisms through which THs disruption mediate this effect remain unknown. To research the possible mechanisms through which Cd-induced THs deficiency may mediate BF neurodegeneration, Wistar male rats were treated with Cd for 1- (1 mg/kg) or 28-days (0.1 mg/kg) with or without triiodothyronine (T3, 40 µg/kg/day). Cd exposure promoted neurodegeneration, spongiosis, gliosis and several mechanisms related to these alterations (increased H202, malondialdehyde, TNF-α, IL-1ß, IL-6, BACE1, Aß and phosphorylated-Tau levels, and decreased phosphorylated-AKT and phosphorylated-GSK-3ß levels). T3 supplementation partially reversed the effects observed. Our results show that Cd induces several mechanisms that may be responsible for the neurodegeneration, spongiosis and gliosis observed in the rats' BF, which are partially mediated by a reduction in THs levels. These data may help to explain the mechanisms through which Cd induces BF neurodegeneration, possibly leading to the cognitive decline observed, providing new therapeutic tools to prevent and treat these damages.


Assuntos
Prosencéfalo Basal , Cádmio , Animais , Masculino , Ratos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Prosencéfalo Basal/metabolismo , Cádmio/toxicidade , Gliose/induzido quimicamente , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação , Ratos Wistar , Espécies Reativas de Oxigênio , Proteínas tau/metabolismo , Hormônios Tireóideos
4.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625768

RESUMO

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Assuntos
Caseína Quinase I , Transdução de Sinais , Caseína Quinase I/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Humanos
5.
Chem Res Toxicol ; 35(12): 2214-2218, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36394833

RESUMO

Acute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aß1-42 and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3ß (p-GSK3ß; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss. This novel information on the PQ mechanisms leading to hippocampal neurodegeneration could help reveal the PQ actions that lead to cognition dysfunction.


Assuntos
Paraquat , Proteínas tau , Proteínas tau/metabolismo , Paraquat/toxicidade , Paraquat/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Insulina/metabolismo , Regulação para Cima , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/farmacologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Morte Celular
6.
Food Chem Toxicol ; 170: 113500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36374790

RESUMO

Bisphenol-A (BPA), a polymer component extensively used, produces memory and learning alterations after acute and long-term exposure. However, the mechanisms are not well known. Cortex and hippocampus neuronal networks control cognitive functions, which are innervated by basal forebrain cholinergic neurons (BFCN), and their neurodegeneration induces cognitive dysfunctions. Wild type or protein tyrosine phosphatase 1B (PTP1B), histone deacetylase 2 (HDAC2), tau or ß amyloid precursor protein (ßAPP) silenced SN56 cells treated with BPA (0.001 µM-100 µM) with or without N-acetylcysteine (NAC; 1 mM), following 1 and 14 days, were used, as a model of BFCN to determine the insulin pathway dysfunction, oxidative stress (OS) generation and amyloid-ß (Aß) and tau proteins accumulation involvement in the BCFN cell death induction, as a possible mechanism that could produce the cognitive disorders reported. BPA-induced BFCN cell death, after 24 h and 14 days of treatment, through insulin pathway dysfunction, OS generation, mediated by NRF2 pathway downregulation, and Aß and tau proteins accumulation, which were in turn induced by HDAC2 and PTP1B overexpression. This is relevant information to explain the BFCN neurodegeneration mechanisms that could trigger the neurodegeneration in the rest of the regions innerved by them, leading to cognitive disorders.


Assuntos
Insulinas , Proteínas tau , Proteínas tau/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Histona Desacetilase 2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios Colinérgicos/metabolismo , Apoptose , Colinérgicos/metabolismo , Insulinas/metabolismo
7.
Food Chem Toxicol ; 167: 113264, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781037

RESUMO

Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aß), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10-100 µM) chemical ability to prevent metal-induced Aß proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aß formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aß proteins (1 µM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aß proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aß proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aß proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Metais , Fármacos Neuroprotetores/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Environ Toxicol Pharmacol ; 90: 103791, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968718

RESUMO

Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities. Thyroid hormones (THs) maintain BFCN viability and functions, and Cd disrupts their levels. However, Cd-induced BFCN damages and THs disruption involvement was not studied. To research this we treated male Wistar rats intraperitoneally with Cd once (1 mg/kg) or repetitively for 28 days (0.1 mg/kg) with/without triiodothyronine (T3, 40 µg/kg/day). Cd increased thyroid-stimulating-hormone (TSH) and decreased T3 and tetraiodothyronine (T4). Cd altered cholinergic transmission and induced a more pronounced neurodegeneration on BFCN, mediated partially by THs reduction. Additionally, Cd antagonized muscarinic 1 receptor (M1R), overexpressed acetylcholinesterase S variant (AChE-S), downregulated AChE-R, M2R, M3R and M4R, and reduced AChE and choline acetyltransferase activities through THs disruption. These results may assist to discover cadmium mechanisms that induce cognitive disabilities, revealing a new possible therapeutic tool.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Neurônios Colinérgicos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Masculino , Ratos Wistar , Receptor Muscarínico M1/efeitos dos fármacos , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/sangue
9.
Food Chem Toxicol ; 157: 112614, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655688

RESUMO

Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities. However, no studies were performed in BFCN. We treated wild type or histone deacetylase (HDAC2), P75NTR or acetylcholinesterase (AChE) silenced SN56 cholinergic cells from BF with BPA (0.001 µM-100 µM) with or without recombinant nerve growth factor (NGF) and with or without acetylcholine (ACh) for one- and fourteen days in order to elucidate the mechanisms underlying these effects. BPA induced cholinergic neurotransmission disruption through reduction of ChAT activity, and produced apoptotic cell death, mediated partially through AChE-S overexpression and NGF/TrkA/P75NTR signaling dysfunction, independently of cholinergic neurotransmission disruption, following one- and fourteen days of treatment. BPA mediates these alterations, in part, through HDAC2 overexpression. These data are relevant since they may help to elucidate the neurotoxic mechanisms that trigger the cognitive disabilities induced by BPA exposure, providing a new therapeutic approach.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Neurônios Colinérgicos/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Fator de Crescimento Neural/metabolismo , Fenóis/toxicidade , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Compostos Benzidrílicos/administração & dosagem , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Neuroblastoma , Fenóis/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real
10.
ACS Chem Neurosci ; 12(18): 3358-3372, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460227

RESUMO

Neurodegenerative diseases have been associated with brain metal accumulation, which produces oxidative stress (OS), matrix metalloproteinases (MMPs) induction, and neuronal cell death. Several metals have been reported to downregulate both the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the antioxidant enzymes regulated by it, mediating OS induction and neurodegeneration. Among a recently discovered family of multitarget 7-amino-phenanthridin-6-one derivatives (APH) the most promising compounds were tested against metal-induced cell death and OS in SN56 cells. These compounds, designed to have chelating activity, are known to inhibit some MMPs and to present antioxidant and neuroprotective effects against hydrogen peroxide treatment to SN56 neuronal cells. However, the mechanisms that mediate this protective effect are not fully understood. The obtained results show that compounds APH1, APH2, APH3, APH4, and APH5 were only able to chelate iron and copper ions among all metals studied and that APH3, APH4, and APH5 were also able to chelate mercury ion. However, none of them was able to chelate zinc, cadmium, and aluminum, thus exhibiting selective chelating activity that can be partly responsible for their neuroprotective action. Otherwise, our results indicate that their antioxidant effect is mediated through induction of the Nrf2 pathway that leads to overexpression of antioxidant enzymes. Finally, these compounds exhibited neuroprotective effects, reversing partially or completely the cytotoxic effects induced by the metals studied depending on the compound used. APH4 was the most effective and safe compound.


Assuntos
Fármacos Neuroprotetores , Estresse Oxidativo , Antioxidantes/farmacologia , Morte Celular , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia
11.
Chem Res Toxicol ; 34(9): 2019-2023, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34424684

RESUMO

The biocide chlorpyrifos (CPF) was described to increase breast cancer risk in humans, to produce breast cancer in animals, and to induce cell proliferation in MCF-7 and MDA-MB-231 cells after 1 and 14 days of treatment. The entire mechanisms related to these CPF actions remain unknown. CPF induced cell proliferation in MCF-7 and MDA-MB-231 cells after 1 and 14 days of treatment by AhR activation through the PGE2/Wnt/ß-catenin pathway and HSP90 and HSP70 overexpression. Our results reveal new information on CPF toxic mechanisms induced in human breast cancer cell lines, which could assist in elucidating its involvement in breast cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Proliferação de Células/efeitos dos fármacos , Clorpirifos/toxicidade , Desinfetantes/toxicidade , Proteínas de Choque Térmico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Regulação para Cima/efeitos dos fármacos
12.
Food Chem Toxicol ; 152: 112241, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33930485

RESUMO

Chlorpyrifos (CPF) biocide, is associated with breast cancer. The processes underlying this association have not been elucidated to date. CPF increases MCF-7 and MDA-MB-231 cell proliferation after acute and long-term treatment, partially through KIAA1363 overexpression and aryl-hydrocarbon receptor activation but also through estrogen receptor-alpha activation after 24 h exposure in MCF-7 cells, suggesting other mechanisms may be involved. CPF induces reactive oxygen species (ROS) generation, acetylcholine accumulation, and overexpression of acetylcholinesterase-R/S (AChE-R/S) variants, while it also alters the Wnt/ß-catenin pathway, both in vitro and in vivo, in processes different from cancer. These latter mechanisms are also linked to cell proliferation and could mediate this effect induced by CPF. Our results show that CPF (0.01-100 µM), following one-day and fourteen-days treatment, respectively, induced ROS generation and lipid peroxidation, and acetylcholine accumulation due to AChE inhibition, Wnt/ß-catenin up- or downregulation depending on the CPF treatment concentration, and AChE-R and AChE-S overexpression, with the latter being mediated through GSK-3ß activity alteration. Finally, CPF promoted cell division through ACh and ROS accumulation, AChE-R overexpression, and Wnt/ß-catenin signaling disruption. Our results provide novel information on the effect of CPF on human breast cancer cell lines that may help to explain its involvement in breast cancer.


Assuntos
Acetilcolinesterase/metabolismo , Proliferação de Células/efeitos dos fármacos , Clorpirifos/farmacologia , Inseticidas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Acetilcolinesterase/genética , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Isoenzimas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/genética , beta Catenina/metabolismo
13.
Eur J Med Chem ; 210: 113061, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310289

RESUMO

Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies. A kinetic study revealed inhibition to be noncompetitive. Some of the compounds showed some degree of selectivity for the MMP-2 and MMP-9 enzymes, which are crucial for brain damage associated to ischemic stroke. Furthermore, some compounds also had a high neuroprotective activity against oxidative stress, which is also very relevant aspect of ischaemic stroke pathogenesis, both decreasing lipid peroxidation and protecting against the oxidative stress-induced reduction in cell viability. One of the compounds, bearing a 2-thienyl substituent at C-9 and a 4-methoxyphenylamino at C-7, had the best-balanced multitarget profile and was selected as a lead on which to base future structural manipulation.


Assuntos
Descoberta de Drogas , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Chem Res Toxicol ; 34(5): 1240-1244, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156613

RESUMO

The herbicide paraquat (PQ) induces hippocampal neuronal cell loss and cognitive dysfunction after one and repeated treatment. All the mechanisms involved in these effects are not well understood. Single and repeated PQ treatment increased Aß and tau protein levels, through HSP70 and TFEB downregulation and proteasome 20S inhibition, producing cell death in primary hippocampal neurons associated with cognitive decline. Our results reveal the mechanisms through which PQ could induce the accumulation of abnormal proteins and neurodegeneration that could originate the cognitive decline produced by it and could help managing its degenerative effects.


Assuntos
Paraquat/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Morte Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
15.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066143

RESUMO

Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética
16.
Food Chem Toxicol ; 144: 111611, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738378

RESUMO

Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or ßAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aß) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes. PQ induced also a decrease of proBDNF and mature BDNF levels and altered P75NTR and tropomyosin receptor kinase B (TrkB) expression. PQ induced PGE2 and BDNF signaling dysfunction, mediated through estrogenic disruption, leading to Aß and pTau proteins synthesis, oxidative stress generation and finally to cell death. Our research provides relevant information to explain PQ hippocampal neurotoxic effects, indicating a probable explanation of the cognitive dysfunction observed and suggests new therapeutic strategies to protect against PQ toxic effects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Estrogênios/metabolismo , Herbicidas/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Paraquat/farmacologia , Transdução de Sinais , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
17.
Ecotoxicol Environ Saf ; 203: 110975, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678756

RESUMO

Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aß) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aß and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aß and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Manganês/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Manganês/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
18.
Chemosphere ; 251: 126426, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32171938

RESUMO

Organophosphate biocide chlorpyrifos (CPF) is involved with breast cancer. However, the mechanisms remain unknown. CPF increases cell division in MCF-7 cells, by estrogen receptor alpha (ERα) activation, although it is a weak ERα agonist, suggesting other mechanisms should be involved. Aromatic hydrocarbon receptor (AhR) activation increases cell division in human breast cancer cells, and CPF strongly activates it. Finally, the KIAA1363 enzyme, which is regulated by CPF, is overexpressed in cancer cells. Accordingly, we hypothesized that CPF or its metabolite chlorpyrifos-oxon (CPFO) could induce cell viability promotion in MCF-7 and MDA-MB-231 cell lines, through mechanisms related to ERα, AhR, and KIAA1363, after 24 h and 14 days treatment. Results show that, after acute and long-term treatment, CPF and CPFO alter differently KIAA1363, AhR, ER and cytochrome P450 isoenzyme 1A1 (CYP1A1) expression. In addition, they induced cell proliferation through ERα activation after 24 h exposure in MCF-7 cells and through KIAA1363 overexpression and AhR activation in MCF-7 and MDA-MB-231 cells after acute and long-term treatment. The results obtained in this work provide new information relative to the mechanisms involved in the CPF toxic effects that could lead to breast cancer disease.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Esterol Esterase/metabolismo , Proliferação de Células/efeitos dos fármacos , Clorpirifos/análogos & derivados , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Receptor alfa de Estrogênio , Estrogênios/farmacologia , Humanos , Células MCF-7 , Células Tumorais Cultivadas
19.
Food Chem Toxicol ; 136: 110961, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31715309

RESUMO

The extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment. Our results reveal that PQ did not alter estrogen receptors (ERα and ERß) gene expression, yet it decreased ER activation, which led to synaptic proteins disruption and amyloid beta proteins generation and Tau proteins hyperphosphorylation. Estrogenic signaling disruption induced by PQ also downregulated the NRF2 pathway leading to oxidative stress generation. Finally, PQ exposure induced cell death mediated by ER dysfunction partially through oxidative stress and amyloid beta proteins generation and Tau proteins hyperphosphorylation. The results presented provide a therapeutic strategy to protect against PQ toxic effects, possibly giving an explanation for the learning and memory impairment generated following PQ exposure.


Assuntos
Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Paraquat/toxicidade , Receptores de Estrogênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Herbicidas/toxicidade , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Gravidez , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteínas tau/metabolismo
20.
Chem Res Toxicol ; 32(10): 1920-1924, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31580065

RESUMO

The biocide chlorpyrifos (CPF) was shown to produce cognition impairment following single and long-term exposure. The complete mechanisms that lead to the CPF induced cognitive disorders remain to be discovered. Aß and tau proteins production was induced in basal forebrain SN56 cholinergic cells, by CPF, through proteasome 20S inhibition and Rab5 overexpression, leading to cell death both after acute and repeated administration, which was related with cognitive disorders induction. The results obtained in our study procure novel information related to the mechanisms involved in CPF neurodegeneration, which could be responsible for cognitive dysfunction and may lead to a promising alternative treatment of these effects.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Morte Celular/efeitos dos fármacos , Clorpirifos/farmacologia , Inseticidas/farmacologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas rab5 de Ligação ao GTP/biossíntese , Proteínas tau/metabolismo , Animais , Linhagem Celular , Camundongos , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...