Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; : 109917, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697276

RESUMO

In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFß levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFß (2 ng/ml) in the presence of vehicle or TGFß signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 hours). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 hours after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFß-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFß-treated cells with grooves (6.2±1.5°) was reduced immediately after strain (21.7±5.3°, p<0.0001) and restored 24 hours after strain cessation (9.5±2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFß-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFß-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p=0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFß and the potential signaling pathways that underlie scleral remodeling.

2.
J Control Release ; 362: 371-380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657693

RESUMO

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.

3.
Nat Commun ; 14(1): 2509, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130851

RESUMO

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Assuntos
Sistemas de Liberação de Medicamentos , Melaninas , Animais , Coelhos , Tartarato de Brimonidina , Peptídeos , Aprendizado de Máquina
4.
Bioeng Transl Med ; 8(3): e10487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206200

RESUMO

Biomaterials are implanted in millions of individuals worldwide each year. Both naturally derived and synthetic biomaterials induce a foreign body reaction that often culminates in fibrotic encapsulation and reduced functional lifespan. In ophthalmology, glaucoma drainage implants (GDIs) are implanted in the eye to reduce intraocular pressure (IOP) in order to prevent glaucoma progression and vision loss. Despite recent efforts towards miniaturization and surface chemistry modification, clinically available GDIs are susceptible to high rates of fibrosis and surgical failure. Here, we describe the development of synthetic, nanofiber-based GDIs with partially degradable inner cores. We evaluated GDIs with nanofiber or smooth surfaces to investigate the effect of surface topography on implant performance. We observed in vitro that nanofiber surfaces supported fibroblast integration and quiescence, even in the presence of pro-fibrotic signals, compared to smooth surfaces. In rabbit eyes, GDIs with a nanofiber architecture were biocompatible, prevented hypotony, and provided a volumetric aqueous outflow comparable to commercially available GDIs, though with significantly reduced fibrotic encapsulation and expression of key fibrotic markers in the surrounding tissue. We propose that the physical cues provided by the surface of the nanofiber-based GDIs mimic healthy extracellular matrix structure, mitigating fibroblast activation and potentially extending functional GDI lifespan.

5.
Biomacromolecules ; 24(3): 1355-1365, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36827603

RESUMO

Retinal microglial/macrophage activation and optic nerve (ON) microglial/macrophage activation are glaucoma biomarkers and potential therapeutic targets for this blinding disease. We report targeting of activated microglia by PAMAM dendrimers in a rat glaucoma model and neuroprotection by N-acetylcysteine-conjugated dendrimer (D-NAC) conjugates in a post-injury rescue experiment. Intravitreally delivered fluorescently labeled dendrimer (D-Cy5) conjugates targeted and were retained in Iba-1-positive cells (90% at 7 days and 55% after 28 days) in the retina following intraocular pressure (IOP) elevation, while systemically delivered D-Cy5 targeted ON cells. A single intravitreal D-NAC dose given 1 week after IOP elevation significantly reduced transcription of pro-inflammatory (IL-6, MCP-1, IL-1ß) and A1 astrocyte (Serping1, Fkbp5, Amigo2) markers and increased survival of retinal ganglion cells (39 ± 12%) versus BSS- (20 ± 15%, p = 0.02) and free NAC-treated (26 ± 14%, p = 0.15) eyes. These results highlight the potential of dendrimer-targeted microglia and macrophages for early glaucoma detection and as a neuroprotective therapeutic target.


Assuntos
Dendrímeros , Glaucoma , Ratos , Animais , Microglia , Neuroproteção , Modelos Animais de Doenças
6.
Invest Ophthalmol Vis Sci ; 62(1): 27, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502460

RESUMO

Purpose: The purpose of this study was to describe the cellular architecture of normal human peripapillary sclera (PPS) and evaluate surface topography's role in fibroblast behavior. Methods: PPS cryosections from nonglaucomatous eyes were labelled for nuclei, fibrillar actin (FA), and alpha smooth muscle actin (αSMA) and imaged. Collagen fibrils were imaged using second harmonic generation. Nuclear density and aspect ratio of the internal PPS (iPPS), outer PPS (oPPS), and peripheral sclera were determined. FA and αSMA fibril alignment with collagen extracellular matrix (ECM) was determined. PPS fibroblasts were cultured on smooth or patterned membranes under mechanical strain and in the presence of TGFß1 and 2. Results: The iPPS (7.1 ± 2.0 × 10-4, P < 0.0001) and oPPS (5.3 ± 1.4 × 10-4, P = 0.0013) had greater nuclei density (nuclei/µm2) than peripheral sclera (2.5 ± 0.8 × 10-4). The iPPS (2.0 ± 0.3, P = 0.002) but not oPPS (2.4 ± 0.4, P = 0.45) nuclei had smaller aspect ratios than peripheral (2.7 ± 0.5) nuclei. FA was present throughout the scleral stroma and was more aligned with oPPS collagen (9.6 ± 1.9 degrees) than in the peripheral sclera (15.9 ± 3.9 degrees, P =0.002). The αSMA fibers in the peripheral sclera were less aligned with collagen fibrils (26.4 ± 4.8 degrees) than were FA (15.9 ± 3.9 degrees, P = 0.0002). PPS fibroblasts cultured on smooth membranes shifted to an orientation perpendicular to the direction of cyclic uniaxial strain (1 Hz, 5% strain, 42.2 ± 7.1 degrees versus 62.0 ± 8.5 degrees, P < 0.0001), whereas aligned fibroblasts on patterned membranes were resistant to strain-induced reorientation (5.9 ± 1.4 degrees versus 10 ± 3.3 degrees, P = 0.21). Resistance to re-orientation was reduced by TGFß treatment (10 ± 3.3 degrees without TGFß1 compared to 23.1 ± 4.5 degrees with TGFß1, P < 0.0001). Conclusions: Regions of the posterior sclera differ in cellular density and nuclear morphology. Topography alters the cellular response to mechanical strain.


Assuntos
Fibroblastos/citologia , Esclera/citologia , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Anatomia Regional , Biomarcadores/metabolismo , Contagem de Células , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Disco Óptico/anatomia & histologia , Doadores de Tecidos
7.
Mar Drugs ; 17(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266202

RESUMO

Quorum sensing (QS) antagonists have been proposed as novel therapeutic agents to combat bacterial infections. We previously reported that the secondary metabolite 3-methyl-N-(2'-phenylethyl)-butyramide, produced by a marine bacterium identified as Halobacillus salinus, inhibits QS controlled phenotypes in multiple Gram-negative reporter strains. Here we report that N-phenethyl hexanamide, a structurally-related compound produced by the marine bacterium Vibrio neptunius, similarly demonstrates QS inhibitory properties. To more fully explore structure-activity relationships within this new class of QS inhibitors, a panel of twenty analogs was synthesized and biologically evaluated. Several compounds were identified with increased attenuation of QS-regulated phenotypes, most notably N-(4-fluorophenyl)-3-phenylpropanamide against the marine pathogen Vibrio harveyi (IC50 = 1.1 µM). These findings support the opportunity to further develop substituted phenethylamides as QS inhibitors.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Halobacillus/metabolismo , Percepção de Quorum/efeitos dos fármacos , Amidas/química , Amidas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Concentração Inibidora 50 , Metabolismo Secundário , Relação Estrutura-Atividade , Vibrio/efeitos dos fármacos , Vibrio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...