Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 15, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350954

RESUMO

BACKGROUND: Amyloid and tau aggregates are considered to cause neurodegeneration and consequently cognitive decline in individuals with Alzheimer's disease (AD). Here, we explore the potential of cerebrospinal fluid (CSF) proteins to reflect AD pathology and cognitive decline, aiming to identify potential biomarkers for monitoring outcomes of disease-modifying therapies targeting these aggregates. METHOD: We used a multiplex antibody-based suspension bead array to measure the levels of 49 proteins in CSF from the Swedish GEDOC memory clinic cohort at the Karolinska University Hospital. The cohort comprised 148 amyloid- and tau-negative individuals (A-T-) and 65 amyloid- and tau-positive individuals (A+T+). An independent sample set of 26 A-T- and 26 A+T+ individuals from the Amsterdam Dementia Cohort was used for validation. The measured proteins were clustered based on their correlation to CSF amyloid beta peptides, tau and NfL levels. Further, we used support vector machine modelling to identify protein pairs, matched based on their cluster origin, that reflect AD pathology and cognitive decline with improved performance compared to single proteins. RESULTS: The protein-clustering revealed 11 proteins strongly correlated to t-tau and p-tau (tau-associated group), including mainly synaptic proteins previously found elevated in AD such as NRGN, GAP43 and SNCB. Another 16 proteins showed predominant correlation with Aß42 (amyloid-associated group), including PTPRN2, NCAN and CHL1. Support vector machine modelling revealed that proteins from the two groups combined in pairs discriminated A-T- from A+T+ individuals with higher accuracy compared to single proteins, as well as compared to protein pairs composed of proteins originating from the same group. Moreover, combining the proteins from different groups in ratios (tau-associated protein/amyloid-associated protein) significantly increased their correlation to cognitive decline measured with cognitive scores. The results were validated in an independent cohort. CONCLUSIONS: Combining brain-derived proteins in pairs largely enhanced their capacity to discriminate between AD pathology-affected and unaffected individuals and increased their correlation to cognitive decline, potentially due to adjustment of inter-individual variability. With these results, we highlight the potential of protein pairs to monitor neurodegeneration and thereby possibly the efficacy of AD disease-modifying therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Encéfalo/patologia , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
2.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557955

RESUMO

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neurônios , Medicina de Precisão , Peptídeos beta-Amiloides
3.
Front Neurol ; 13: 890638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903119

RESUMO

Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.

4.
Med ; 3(2): 137-153.e3, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35075450

RESUMO

BACKGROUND: Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS: Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS: IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS: Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING: Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina A Secretora , Imunoglobulina G , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Saliva , Soroconversão , Glicoproteína da Espícula de Coronavírus
5.
N Biotechnol ; 66: 46-52, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34628049

RESUMO

Highly accurate serological tests are key to assessing the prevalence of SARS-CoV-2 antibodies and the level of immunity in the population. This is important to predict the current and future status of the pandemic. With the recent emergence of new and more infectious SARS-CoV-2 variants, assays allowing for high throughput analysis of antibodies able to neutralize SARS-CoV-2 become even more important. Here, we report the development and validation of a robust, high throughput method, which enables the assessment of antibodies inhibiting the binding between the SARS-CoV-2 spike protein and angiotensin converting enzyme 2 (ACE2). The assay uses recombinantly produced spike-f and ACE2 and is performed in a bead array format, which allows analysis of up to 384 samples in parallel per instrument over seven hours, demanding only one hour of manual handling. The method is compared to a microneutralization assay utilising live SARS-CoV-2 and is shown to deliver highly correlating data. Further, a comparison with a serological method that measures all antibodies recognizing the spike protein shows that this type of assessment provides important insights into the neutralizing efficiency of the antibodies, especially for individuals with low antibody levels. This method can be an important and valuable tool for large-scale assessment of antibody-based neutralization, including neutralization of new spike variants that might emerge.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Leukemia ; 36(2): 476-481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564699

RESUMO

We studied clinical and immunological outcome of Covid-19 in consecutive CLL patients from a well-defined area during month 1-13 of the pandemic. Sixty patients (median age 71 y, range 43-97) were identified. Median CIRS was eight (4-20). Patients had indolent CLL (n = 38), had completed (n = 12) or ongoing therapy (n = 10). Forty-six patients (77%) were hospitalized due to severe Covid-19 and 11 were admitted to ICU. Severe Covid-19 was equally distributed across subgroups irrespective of age, gender, BMI, CLL status except CIRS (p < 0.05). Fourteen patients (23%) died; age ≥75 y was the only significant risk factor (p < 0.05, multivariate analysis with limited power). Comparing month 1-6 vs 7-13 of the pandemic, deaths were numerically reduced from 32% to 18%, ICU admission from 37% to 15% whereas hospitalizations remained frequent (86% vs 71%). Seroconversion occurred in 33/40 patients (82%) and anti-SARS-CoV-2 antibodies were detectable at six and 12 months in 17/22 and 8/11 patients, respectively. Most (13/17) had neutralizing antibodies and 19/28 had antibodies in saliva. SARS-CoV-2-specific T-cells (ELISpot) were detected in 14/17 patients. Covid-19 continued to result in high admission even among consecutive and young early- stage CLL patients. A robust and durable B and/or T cell immunity was observed in most convalescents.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/complicações , Leucemia Linfocítica Crônica de Células B/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Terapia Combinada , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Leucemia Linfocítica Crônica de Células B/virologia , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificação
7.
Clin Transl Immunology ; 10(7): e1312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295471

RESUMO

OBJECTIVE: The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. METHODS: More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. RESULTS: Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. CONCLUSION: These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...