Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 516, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693292

RESUMO

The success of deep learning in various applications depends on task-specific architecture design choices, including the types, hyperparameters, and number of layers. In computational biology, there is no consensus on the optimal architecture design, and decisions are often made using insights from more well-established fields such as computer vision. These may not consider the domain-specific characteristics of genome sequences, potentially limiting performance. Here, we present GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep learning models for genome sequence data. It optimizes the overall layout of the architecture, with a search space specifically designed for genomics. Additionally, it optimizes hyperparameters of individual layers and the model training procedure. On a viral classification task, GenomeNet-Architect reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared to the best-performing deep learning baselines.


Assuntos
Aprendizado Profundo , Genômica , Genômica/métodos , Biologia Computacional/métodos , Humanos , Redes Neurais de Computação
3.
Commun Biol ; 6(1): 928, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696966

RESUMO

Deep learning in bioinformatics is often limited to problems where extensive amounts of labeled data are available for supervised classification. By exploiting unlabeled data, self-supervised learning techniques can improve the performance of machine learning models in the presence of limited labeled data. Although many self-supervised learning methods have been suggested before, they have failed to exploit the unique characteristics of genomic data. Therefore, we introduce Self-GenomeNet, a self-supervised learning technique that is custom-tailored for genomic data. Self-GenomeNet leverages reverse-complement sequences and effectively learns short- and long-term dependencies by predicting targets of different lengths. Self-GenomeNet performs better than other self-supervised methods in data-scarce genomic tasks and outperforms standard supervised training with ~10 times fewer labeled training data. Furthermore, the learned representations generalize well to new datasets and tasks. These findings suggest that Self-GenomeNet is well suited for large-scale, unlabeled genomic datasets and could substantially improve the performance of genomic models.


Assuntos
Aprendizado Profundo , Genômica , Biologia Computacional , Aprendizado de Máquina
4.
Nucleic Acids Res ; 50(10): e60, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35188571

RESUMO

Advances in transcriptomic and translatomic techniques enable in-depth studies of RNA activity profiles and RNA-based regulatory mechanisms. Ribosomal RNA (rRNA) sequences are highly abundant among cellular RNA, but if the target sequences do not include polyadenylation, these cannot be easily removed in library preparation, requiring their post-hoc removal with computational techniques to accelerate and improve downstream analyses. Here, we describe RiboDetector, a novel software based on a Bi-directional Long Short-Term Memory (BiLSTM) neural network, which rapidly and accurately identifies rRNA reads from transcriptomic, metagenomic, metatranscriptomic, noncoding RNA, and ribosome profiling sequence data. Compared with state-of-the-art approaches, RiboDetector produced at least six times fewer misclassifications on the benchmark datasets. Importantly, the few false positives of RiboDetector were not enriched in certain Gene Ontology (GO) terms, suggesting a low bias for downstream functional profiling. RiboDetector also demonstrated a remarkable generalizability for detecting novel rRNA sequences that are divergent from the training data with sequence identities of <90%. On a personal computer, RiboDetector processed 40M reads in less than 6 min, which was ∼50 times faster in GPU mode and ∼15 times in CPU mode than other methods. RiboDetector is available under a GPL v3.0 license at https://github.com/hzi-bifo/RiboDetector.


Assuntos
Aprendizado Profundo , RNA Ribossômico , Metagenômica/métodos , RNA , RNA Ribossômico/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...