Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 21(2): 441-454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869593

RESUMO

Herein, the selectivity/simultaneously adsorption associated with Congo Red (CR) and Methylene Blue (MB) has been efficiently undertaken via amorphous perlite. Under optimum conditions of 38 min, 96 mg/L and 312°K for the contact time, the dye concentration, and the temperature, respectively, the optimization study using central composite design (CCD) matrix gave rise to high adsorption yields of 82.22 and 96.65% for CR and MB, respectively. Importantly, kinetic and isotherm studies attested that the batch adsorption occurs as intra-diffusional mass transport onto porous material. The obtained thermodynamic parameters are indicative of an endothermic/spontaneous physisorption process. Whereas SEM-EDS characterization revealed the superficial adsorption process of both CR and MB onto perlite. In addition, the FTIR analysis suggests that the adsorption process disrupted the short-range compounds order of perlite samples, revealing the marked crystallinity decrease of the adsorbent after adsorption. Finally, application of these optimum conditions tests on real industrial wastewater show that the adsorption was simultaneous at neutral pH and at 312°K, whereas CR and MB can be selectively adsorbed at pH 4 and 9, respectively. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00870-1.

2.
Polymers (Basel) ; 11(2)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30960270

RESUMO

There is an urgent demand worldwide for the development of highly selective adsorbents and sensors of heavy metal ions and other organic pollutants. Within these environmental and public health frameworks, we are combining the salient features of clays and chelatant polymers to design selective metal ion adsorbents. Towards this end, the ion imprinting approach has been used to develop a novel nanohybrid material for the selective separation of Cu2+ ions in an aqueous solution. The Cu2+-imprinted polymer/montmorillonite (IIP/Mt) and non-imprinted polymer/montmorillonite (NIP/Mt) nanocomposites were prepared by a radical photopolymerization process in visible light. The ion imprinting step was indeed important as the recognition of copper ions by IIP/Mt was significantly superior to that of NIP/Mt, i.e., the reference nanocomposite synthesized in the same way but in the absence of Cu2+ ions. The adsorption process as batch study was investigated under the experimental condition affecting same parameters such as contact time, concentration of metal ions, and pH. The adsorption capacity of Cu2+ ions is maximized at pH 5. Removal of Cu2+ ion achieved equilibrium within 15 min; the results obtained were found to be fitted by the pseudo-second-order kinetics model. The equilibrium process was well described by the Langmuir isothermal model and the maximum adsorption capacity was found to be 23.6 mg/g. This is the first report on the design of imprinted polymer nanocomposites using Type II radical initiators under visible light in the presence of clay intercalated with hydrogen donor diazonium. The method is original, simple and efficient; it opens up new horizons in the general domain of clay/polymer nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...