Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960051

RESUMO

Through the degradation of reactive oxygen species (ROS), different antioxidant enzymes, such as catalase (CAT), defend organisms against oxidative stress. These enzymes are crucial to numerous biological functions, like plant development and defense against several biotic and abiotic stresses. However, despite the major economic importance of Avena sativa around the globe, little is known about the CAT gene's structure and organization in this crop. Thus, a genome-wide investigation of the CAT gene family in oat plants has been carried out to characterize the potential roles of those genes under different stressors. Bioinformatic approaches were used in this study to predict the AvCAT gene's structure, secondary and tertiary protein structures, physicochemical properties, phylogenetic tree, and expression profiling under diverse developmental and biological conditions. A local Saudi oat variety (AlShinen) was used in this work. Here, ten AvCAT genes that belong to three groups (Groups I-III) were identified. All identified CATs harbor the two conserved domains (pfam00199 and pfam06628), a heme-binding domain, and a catalase activity motif. Moreover, identified AvCAT proteins were located in different compartments in the cell, such as the peroxisome, mitochondrion, and cytoplasm. By analyzing their promoters, different cis-elements were identified as being related to plant development, maturation, and response to different environmental stresses. Gene expression analysis revealed that three different AvCAT genes belonging to three different subgroups showed noticeable modifications in response to various stresses, such as mannitol, salt, and ABA. As far as we know, this is the first report describing the genome-wide analysis of the oat catalase gene family, and these data will help further study the roles of catalase genes during stress responses, leading to crop improvement.

2.
Heliyon ; 9(8): e18916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609422

RESUMO

Catalases are crucial antioxidant enzymes that regulate plants responses to different biotic and abiotic stresses. It has been previously shown that the activities of durum wheat catalase proteins (TdCAT1) were stimulated in the presence of divalent cations Mn2+, Mg2+, Fe2+, Zn2+, and Ca2+. In addition, TdCAT1s can interact with calmodulins in calcium-independent manner, and this interaction stimulates its catalytic activity in a calcium-dependent manner. Moreover, this activity is further enhanced by Mn2+ cations. The current study showed that wheat catalase presents different phosphorylation targets. Besides, we demonstrated that catalase is able to interact with Mitogen Activated Proteins kinases via a conserved domain. This interaction activates wheat catalase independently of its phosphorylation status but is more promoted by Mn2+, Fe2+ and Ca2+ divalent cations. Interestingly, we have demonstrated that durum wheat catalase activity is differentially regulated by Mitogen Activated Proteins kinases and Calmodulins in the presence of calcium. Moreover, the V0 of the reaction increase gradually following the increasing quantities of Mn2+ divalent cations. Such results have never been described before and suggest i) complex regulatory mechanisms exerted on wheat catalase, ii) divalent cations (Mn2+; Mg2+; Ca2+ and Fe2+) act as key cofactors in these regulatory mechanisms.

3.
Front Plant Sci ; 14: 1167376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396645

RESUMO

The rapid increase in average temperatures and the progressive reduction in rainfalls caused by climate change is reducing crop yields worldwide, particularly in regions with hot and semi-arid climates such as the Mediterranean area. In natural conditions, plants respond to environmental drought stress with diverse morphological, physiological, and biochemical adaptations in an attempt to escape, avoid, or tolerate drought stress. Among these adaptations to stress, the accumulation of abscisic acid (ABA) is of pivotal importance. Many biotechnological approaches to improve stress tolerance by increasing the exogenous or endogenous content of ABA have proved to be effective. In most cases the resultant drought tolerance is associated with low productivity incompatible with the requirements of modern agriculture. The on-going climate crisis has provoked the search for strategies to increase crop yield under warmer conditions. Several biotechnological strategies, such as the genetic improvement of crops or the generation of transgenic plants for genes involved in drought tolerance, have been attempted with unsatisfactory results suggesting the need for new approaches. Among these, the genetic modification of transcription factors or regulators of signaling cascades provide a promising alternative. To reconcile drought tolerance with crop yield, we propose mutagenesis of genes controlling key signaling components downstream of ABA accumulation in local landraces to modulate responses. We also discuss the advantages of tackling this challenge with a holistic approach involving different knowledge and perspectives, and the problem of distributing the selected lines at subsidized prices to guarantee their use by small family farms.

4.
Life (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36556380

RESUMO

The xylophagous beetle, Steraspis speciosa, has infected Acacia forests in Saudi Arabia, causing significant damage and even leading to the death of several trees. In the Ha'il region, in the north of Saudi Arabia, an investigation of 13 study sites shows that the Acacia population is mainly composed of three species: A. gerrardii (90.3%), A. ehrenbergiana (7.5%), and A. raddiana (2.2%) and that 21.7% of this population was infected by S. speciosa. The age of the tree (young, adult, old) and environment habitat (Dam, Wadi, Plateau) effects, and insect life-cycle were studied in the protected Machar National Park. Infection in the park, estimated at 25.4%, mainly affects the oldest trees (20.1%) more than the youngest ones (2.3%), while the driest environments (Plateau, 38.8%) are more vulnerable to infection than humid habitats (Dam, 9.4%). The life cycle of S. speciosa lasts about two years, with four stages to complete metamorphosis: mating and eggs (≈3 months), larvae (≈16 months), pupae (≈3 months), and emergency and adults (≈3 months). The larvae stage with many metamorphic instars was the most harmful for tree and takes the longest. The female beetle lays its eggs on weak stem parts. Steraspis speciosa larvae feed on the stems of Acacia trees, and the instar larvae were gathered under the bark of infected stems, harming most of the phloem and a large portion of the xylem. When combined with a prolonged period of drought, S. speciosa causes the withering of numerous branches and, in extreme cases, kills the entire tree.

5.
Life (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676052

RESUMO

The lavender Lavandula multifida L., a medicinal plant grown in arid regions of Tunisia, was recently considered an endangered species; thus, its habitats regressed to some difficult zones in terms of access, such as the watershed of Oued Agareb in central-eastern Tunisia. This species was recorded only in deep and narrow shady Wadi of the watershed and benefited from protection against overgrazing, erosion and sunlight. L. multifida was rarely observed in an open area, such as a plateau or large-bed valley. The plant's metabolism is linked to its response to environmental conditions, which is of particular interest to understanding the components of the considered population of L. multifida. Consequently, biochemical and antimicrobial analyses have been evaluated. Using gas chromatography-mass spectrometry (GC-MS) analysis reveals that among the 58 compounds identified in L. multifida essential oil extracted from aboveground plant tissues, camphor was the major component (15.68%), followed by 1,8-cineole (14.14%) and alpha-pinene (13.82%). Moreover, it has been observed that Escherichia coli was more susceptible than Staphylococcus aureus to the antimicrobial properties of L. multifida essential oil, while in the case of camphor, S. aureus was more susceptible than E. coli. The protected population of L. multifida exhibits a distinctive vegetative development and growth cycle, resulting in specific secondary metabolites and distinguished antimicrobial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA