Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0270769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789332

RESUMO

Determinants of elevational distribution of butterfly species richness and abundance in the tropics are poorly understood. Here we assess the combined effects, both additive and interactive, of seasonality and habitat structure on the elevational distribution of butterflies in the Uluguru Mountains, Tanzania. We sampled butterflies along a 1100 m elevational gradient that extended from 1540 to 2639 m using a time-constrained fixed-area method during the short to long rains and long to short rains transitions, and in habitat structure classified as closed or open. We used semi-parametric generalized linear mixed models to assess the relation between butterfly species richness or abundance, and seasonality, habitat structure, family and elevation. For all species combined, species richness declined with elevation in both open and closed habitats during the long to short rains transition. During the short to long rains transition, species richness displayed a mid-elevation peak across habitats. Among the three focal families (Nymphalidae, Papilionidae and Pieridae) similar patterns in the elevational distribution of species richness were observed. Species abundance declined or remained stable with elevation across seasons and habitat structure; the exception being species abundance in open habitat during the short to long rain transition and increased slightly with elevation. Abundance by family did not vary significantly by habitat structure or season. Our results indicate that seasonality and habitat structure shape species richness and abundance of butterflies along an elevational gradient in the Uluguru Mountains. These patterns are important for informing conservation actions because temperature as well as annual and seasonal variation in precipitation are predicted to increase in East Africa as a result of climate change, important determinants of seasonality, while habitat disturbance may increase due to a projected doubling in Tanzania's population over the next 27 years.


Assuntos
Borboletas , Animais , Biodiversidade , Mudança Climática , Ecossistema , Humanos , Tanzânia
2.
PLoS One ; 16(3): e0248712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784307

RESUMO

Global warming is predicted to result in upslope shifts in the elevational ranges of bird species in montane habitats. Yet few studies have examined changes over time in the elevational distribution of species along fragmented gradients in response to global warming. Here, we report on a resurvey of an understory bird community in the Usambara Mountains in Tanzania, along a forested elevational gradient that has been fragmented over the last 200 years. In 2019, we resurveyed seven sites, ranging in elevation from 360 m to 2110 m, that were originally surveyed between 1979 and 1981. We calculated differences in mean elevation and lower and upper range limits for 29 species between the two time periods and corrected for possible differences in elevation due to chance. Over four decades, we documented a significant mean upslope shift across species of 93 m. This shift was smaller than the 125 m expected shift due to local climate warming. Of the 29 focal species, 19 shifted upslope, eight downslope, and two remained unchanged. Mean upslope shifts in species were driven largely by contracting lower range limits which moved significantly upslope on average across species by 183 m, while upper range limits shifted non-significantly upslope by 72 m, leading to a mean range contraction of 114 m across species. Community composition of understory bird species also shifted over time, with current communities resembling communities found historically at lower elevations. Past forest fragmentation in combination with the limited gap-crossing ability of many tropical understory bird species are very likely important contributory factors to the observed asymmetrical shifts in lower and upper elevational range limits. Re-establishing forested linkages among the largest and closest forest fragments in the Eastern Arc Mountains are critical to permitting species to shift upslope and to reduce further elevational range contractions over time.


Assuntos
Altitude , Migração Animal , Aves/fisiologia , Florestas , Aquecimento Global , Animais , Biodiversidade , Tanzânia , Temperatura , Clima Tropical
3.
PLoS One ; 13(9): e0202814, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231048

RESUMO

Rainfall exerts a controlling influence on the availability and quality of vegetation and surface water for herbivores in African terrestrial ecosystems. We analyse temporal trends and variation in rainfall in the Maasai Mara ecosystem of East Africa and infer their implications for animal population and biodiversity dynamics. The data originated from 15 rain gauges in the Mara region (1965-2015) and one station in Narok Town (1913-2015), in Kenya's Narok County. This is the first comprehensive and most detailed analysis of changes in rainfall in the region of its kind. Our results do not support the current predictions of the International Panel of Climate Change (IPCC) of very likely increases of rainfall over parts of Eastern Africa. The dry season rainfall component increased during 1935-2015 but annual rainfall decreased during 1962-2015 in Narok Town. Monthly rainfall was more stable and higher in the Mara than in Narok Town, likely because the Mara lies closer to the high-precipitation areas along the shores of Lake Victoria. Predominantly deterministic and persistent inter-annual cycles and extremely stable seasonal rainfall oscillations characterize rainfall in the Mara and Narok regions. The frequency of severe droughts increased and floods intensified in the Mara but droughts became less frequent and less severe in Narok Town. The timings of extreme droughts and floods coincided with significant periodicity in rainfall oscillations, implicating strong influences of global atmospheric and oceanic circulation patterns on regional rainfall variability. These changing rainfall patterns have implications for animal population dynamics. The increase in dry season rainfall during 1935-2015 possibly counterbalanced the impacts of resource scarcity generated by the declining annual rainfall during 1965-2015 in Narok Town. However, the increasing rainfall extremes in the Mara can be expected to create conditions conducive to outbreaks of infectious animal diseases and reduced vegetation quality for herbivores, particularly when droughts and floods persist over multiple years. The more extreme wet season rainfall may also alter herbivore space use, including migration patterns.


Assuntos
Biodiversidade , Dinâmica Populacional , Grupos de População Animal , Animais , Mudança Climática , Ecossistema , Chuva
4.
PLoS One ; 12(9): e0185468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957397

RESUMO

Landscape change in and around protected areas is of concern worldwide given the potential impacts of such change on biodiversity. Given such impacts, we sought to understand the extent of changes in different land-cover types at two protected areas, Tarangire and Katavi National Parks in Tanzania, over the past 27 years. Using Maximum Likelihood classification procedures we derived eight land-cover classes from Landsat TM and ETM+ images, including: woody savannah, savannah, grassland, open and closed shrubland, swamp and water, and bare land. We determined the extent and direction of changes for all land-cover classes using a post-classification comparison technique. The results show declines in woody savannah and increases in barren land and swamps inside and outside Tarangire National Park and increases in woody savannah and savannah, and declines of shrubland and grassland inside and outside Katavi National Park. The decrease of woody savannah was partially due to its conversion into grassland and barren land, possibly caused by human encroachment by cultivation and livestock. Based upon these changes, we recommend management actions to prevent detrimental effects on wildlife populations.


Assuntos
Animais Selvagens/fisiologia , Conservação dos Recursos Naturais , Comunicações Via Satélite , Animais , Produtos Agrícolas/fisiologia , Geografia , Atividades Humanas , Humanos , Processamento de Imagem Assistida por Computador , Chuva , Tanzânia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...