Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379899

RESUMO

The Sino-Japanese Floristic Region (SJFR) is a key area for plant phylogeographical research, due to its very high species diversity and disjunct distributions of a large number of species and genera. At present, the root cause and temporal origin of the discontinuous distribution of many plants in the Sino-Japanese flora are still unclear. Diabelia (Caprifoliaceae; Linnaeoideae) is a genus endemic to Asia, mostly in Japan, but two recent discoveries in China raised questions over the role of the East China Sea (ECS) in these species' disjunctions. Chloroplast DNA sequence data were generated from 402 population samples for two regions (rpl32-trnL, and trnH-psbA) and 11 nuclear microsatellite loci were screened for 549 individuals. Haplotype, population-level structure, combined analyses of ecological niche modeling, and reconstruction of ancestral state in phylogenies were also performed. During the Last Glacial Maximum (LGM) period after the Tertiary, Diabelia was potentially widely distributed in southeastern China, the continental shelf of the East China Sea and Japan (excluding Hokkaido). After LGM, all populations in China have disappeared except those in Zhejiang which may represent a Glacial refuge. Populations of Diabelia in Japan have not experienced significant bottleneck effects, and populations have maintained a relatively stable state. The observed discontinuous distribution of Diabelia species between China and Japan are interpreted as the result of relatively ancient divergence. The phylogenetic tree of chloroplast fragments shows the characteristics of multi-origin evolution (except for D. sanguinea). STRUCTURE analysis of nuclear Simple Sequence Repeat (nSSR) showed that the plants of the Diabelia were divided into five gene pools: D. serrata, D. spathulata, D. sanguinea, D. ionostachya (D. spathulata var. spathulata-Korea), and populations of D. ionostachya var. ionostachya in Yamagata prefecture, northern Japan. Molecular evidence provides new insights of Diabelia into biogeography, a potential glacial refuge, and population-level genetic structure within species. In the process of species differentiation, ECS acts as a corridor for two-way migration of animals and plants between China and Japan during glacial maxima, providing the possibility of secondary contact for discontinuously distributed species between China and Japan, or as a filter (creating isolation) during glacial minima. The influence of the ECS in speciation and biogeography of Diabelia in the Tertiary remains unresolved in this study. Understanding origins, evolutionary histories, and speciation will provide a framework for the conservation and cultivation of Diabelia.

2.
Mitochondrial DNA B Resour ; 3(2): 620-621, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33474263

RESUMO

Dracaena cambodiana (Asparagaceae) is a treelike plant ranging from 3 to 10 m tall. It grows in low-elevation forests (0-300 m) having dry and sandy soils. It is distributed in Southern Hainan Island in China and other Southeast Asian countries (e.g. Cambodia, Laos, Thailand and Vietnam). The dried resin can be used medicinally as a substitute for that of Dracaena cochinchinensis. It has been ranked as a Vulnerable (VU) species in China. Here we report and characterize the complete plastid genome sequence of D. cambodiana. The complete plastome is 156,697 bp in length. It contains the typical structure and gene content of angiosperm plastomes, including two Inverted Repeat (IR) regions of 26,526 bp, a Large Single-Copy (LSC) region of 84,988 bp and a Small Single-Copy (SSC) region of 18,657 bp. The plastome contains 113 genes, consisting of 76 unique protein-coding genes, 30 unique tRNA genes, four unique rRNA genes and three pseudogenes (i.e. matK, infA, ndhF). The overall A/T content in the plastome of D. cambodiana is 62.4%. We performed phylogenetic analyses using the entire plastome, including spacers, introns, etc., and we determined that D. cambodiana and Maianthemum bicolor were closely related. The complete plastome sequence of D. cambodiana will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Asparagales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...