Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 264: 104358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692144

RESUMO

The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Sulfatos , Poluentes Químicos da Água , Água Subterrânea/química , Sulfatos/análise , Poluentes Químicos da Água/análise , China , Minas de Carvão , Movimentos da Água , Mineração
2.
Water Res ; 219: 118530, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533622

RESUMO

The mechanisms controlling arsenic (As) enrichment and mobilization associated with human health risk assessment of groundwater in the Longdong Basin, located in the southern part of the Loess Plateau, China, have been yet unexplained. This uncertainty is partly attributed to a poor understanding of groundwater arsenic management. To address this problem, this study investigated the occurrence and spatial distribution of As in unconfined groundwater (UG) and confined groundwater (CG) in the study area, integrated Self-Organizing Maps (SOM) and geochemical modeling to elucidate the mechanisms controlling As release and mobilization in groundwater, and conducted a health risk assessment of groundwater As. The results showed that 13.6% of UG samples (n = 66) and 22.4% of CG samples (n = 98) exceeded the WHO guideline limit of As (10 µg/L). The detailed hydrogeochemical studies showed that As-enrichment groundwater is dominated by Cl-Na type, and Gaillardet diagram indicated that evaporites weathering may contribute to As mobilization in CG. The SOM analysis combined with Spearman's correlation coefficient quantified the negative correlation between As and redox potential, dissolved oxygen, SO42-, NO3-, and the positive correlation between As and HCO3-, Mn in UG. In CG, As is positively correlated to pH and negatively to electrical conductivity, SO42-, Fe and Mn. The saturation indices of the mineral phases indicates an insignificant relationship between As and Fe. We conclude that under oxidizing conditions, evaporative controls and the desorption of Fe-oxides under alkaline and high salinity conditions are the dominant mechanisms controlling As release and mobilization in groundwater. In addition, exposure to groundwater As through drinking water posed potential risk of carcinogenic and non-carcinogenic effects on children and adults. This study contributes to groundwater As management and sustainable safe groundwater supply.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Criança , China , Água Potável/análise , Monitoramento Ambiental , Água Subterrânea/análise , Humanos , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 29(1): 901-921, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34345988

RESUMO

Understanding the evolution process of hydrogeochemistry and groundwater quality is essential for water supply and health in the southwestern Ordos Basin, where groundwater is a vital source for drinking. This study systematically illustrates the hydrogeochemical characteristics and evolution mechanism based on the groundwater samples (n = 67) collected from Loess area by integrating multivariate statistical methods and hydrogeochemical methods. Furthermore, the entropy water quality index (EWQI) and water quality indices combined with spatial analysis were employed to evaluate the suitability of groundwater for drinking and irrigation purposes and analyze the spatial variation of water quality. The hierarchical cluster analysis and principal component analysis classified groundwater dataset into four clusters and four components which were examined using a Piper diagram and Gibbs diagram, representing different hydrogeochemical characteristics and controlling factors. Based on results, the groundwater chemistry was characterized by representative water types: freshwater (cluster 1, cluster 2), low salinity (half of cluster 3), high salinity (half of cluster 3, cluster 4), and the main controlling factors of hydrogeochemistry revealed by Gibbs diagram were evaporation crystallization (cluster 3, cluster 4) and water-rock interactions (cluster 1, cluster 2). Moreover, the Gaillardet diagram, chloro-alkaline indices, binary diagram, and saturation index further comprehensively illustrate that the silicate and evaporite weathering, ion exchange, dissolution of halite, gypsum, and anhydrite are responsible for hydrogeochemical process. Based on EWQI and ArcGIS, the groundwater quality is categorized as excellent (47.0%), good (31.8%), medium (4.5%), poor (6.1%), and extremely poor (10.6%) types, and the quality in the south of the study area is better than north. Additionally, the USSL diagram shows that most of samples belong to C3S1 (high-salinity hazard and low-sodium hazard) and C2S1 (medium-salinity hazard and low-sodium hazard), and Wilcox diagram shows that 77.2% of samples are suitable for irrigation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , China , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Sci Rep ; 11(1): 23152, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848806

RESUMO

The identification of open-pit mine water sources is of great significance in preventing water disasters. Combined with hydrochemistry and multivariate statistical analysis, this paper systematically analyzed the hydraulic connections between aquifers and the complex seepage water sources in the pit and roadway of Dagushan iron mine through qualitative analysis and quantitative calculation. According to the hydrochemical characteristics of the study area, the causes of seepage water at different positions in the mining area were reasonably explained. The results show that there is a possible hydraulic connection or similar source of water body between the bedrock fissure aquifer and the eluvium pore aquifer. The water seepage of 2# roadway mainly comes from bedrock fissure aquifer in the north of mining area. The reason for serious water seepage in the 3# roadway and the western side of the pit is that the fault connects the shallow alluvial pore aquifer and bedrock fissure aquifer. The source of water on the southern side pit comes from the river and groundwater on the southern side of the mine. The results presented here provide significant guidance for the management of mine water seepage problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...