Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(4): 861-878, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872257

RESUMO

Schisandra chinensis, a traditional Chinese medicinal herb, is rich in chemical constituents, including lignans, triterpenes, polysaccharides, and volatile oils. Clinically, it is commonly used to treat cardiovascular, cerebrovascular, liver, gastrointestinal, and respiratory diseases. Modern pharmacological studies have shown that S. chinensis extract and monomers have multiple pharmacological activities in lowering liver fat, alleviating insulin resistance, and resisting oxidative stress, and have good application prospects in alleviating nonalcoholic fatty liver disease(NAFLD). Therefore, this study reviewed the research progress on chemical constituents of S. chinensis and its effect on NAFLD in recent years to provide references for the research on S. chinensis in the treatment of NAFLD.


Assuntos
Resistência à Insulina , Lignanas , Hepatopatia Gordurosa não Alcoólica , Schisandra
2.
Front Plant Sci ; 13: 881342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812978

RESUMO

Schisandra chinensis owes its therapeutic efficacy to the dibenzocyclooctadiene lignans, which are limited to the Schisandraceae family and whose biosynthetic pathway has not been elucidated. Coniferyl alcohol is the synthetic precursor of various types of lignans and can be acetylated to form coniferyl acetate by coniferyl alcohol acyltransferase (CFAT), which belongs to the BAHD acyltransferase family. This catalytic reaction is important because it is the first committed step of the hypothetical biosynthetic pathway in which coniferyl alcohol gives rise to dibenzocyclooctadiene lignans. However, the gene encoding CFAT in S. chinensis has not been identified. In this study, firstly we identified 37 ScBAHD genes from the transcriptome datasets of S. chinensis. According to bioinformatics, phylogenetic, and expression profile analyses, 1 BAHD gene, named ScBAHD1, was cloned from S. chinensis. The heterologous expression in Escherichia coli and in vitro activity assays revealed that the recombinant enzyme of ScBAHD1 exhibits acetyltransferase activity with coniferyl alcohol and some other alcohol substrates by using acetyl-CoA as the acetyl donor, which indicates ScBAHD1 functions as ScCFAT. Subcellular localization analysis showed that ScCFAT is mainly located in the cytoplasm. In addition, we generated a three-dimensional (3D) structure of ScCFAT by homology modeling and explored the conformational interaction between protein and ligands by molecular docking simulations. Overall, this study identified the first enzyme with catalytic activity from the Schisandraceae family and laid foundations for future investigations to complete the biosynthetic pathway of dibenzocyclooctadiene lignans.

3.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2890-2898, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718509

RESUMO

The active components, mainly derived from secondary metabolites of medicinal plants, are the material basis for the efficacy of medicinal plants. Lignans, the secondary metabolites in plants with high bioactivity, are widely distributed in a variety of plant species, and their antiviral, antitumor, antibacterial, and antioxidant activities have been proved in clinical practice. Generally, lignans are diverse in structures with many chiral centers, and most of them are optically active. The biosynthesis of lignans depends on the oxidative coupling reaction through site selection and stereo selection, which impedes synthesized lignans to form racemates, but makes them in a three-dimensional configuration. Dirigent protein(DIR) plays an important role in guiding location selection and stereo selection of lignans in biosynthesis. In vitro studies on lignan biosynthesis have shown that racemic end products are obtained in the absence of DIR proteins, while the products in a three-dimensional configuration can be yielded in the presence of DIR proteins, indicating that DIR proteins play an asymmetric role in the biosynthesis of plant secondary metabolites. The present study reviewed the biolo-gical significance of DIR protein, the cloning of DIR gene, gene structure, catalytic mechanism, and the research progress in Isatis indigotica, Eucommia ulmoides, Forsythia suspensa, Salvia miltiorrhiza, Panax pseudoginseng var. notoginseng, and Schisandra chinensis, which provides a reference for the follow-up research of DIR gene.


Assuntos
Forsythia , Isatis , Lignanas , Plantas Medicinais , Schisandra , Lignanas/química , Plantas Medicinais/genética , Schisandra/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA