Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2312119, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497515

RESUMO

Anatase TiO2 as sodium-ion-battery anode has attracted increased attention because of its low volume change and good safety. However, low capacity and poor rate performance caused by low electrical conductivity and slow ion diffusion greatly impede its practical applications. Here, a bi-solvent enhanced pressure strategy that induces defects (oxygen vacancies) into TiO2 via N doping and reduces its size by using mutual-solvent ethanol and dopant dimethylformamide as pressure-increased reagent of tetrabutyl orthotitanate tetramer is proposed to fabricate N-doped TiO2 /C nanocomposites. The induced defects can increase ion storage sites, improve electrical conductivity, and decrease bandgap and ion diffuse energy barrier of TiO2 . The size reduction increases contact interfaces between TiO2 and C and shortens ion diffuse distance, thus increasing extra ion storage sites and boosting ion diffusion rate of TiO2 . The N-doped TiO2 possesses highly stable crystal structure with a slightly increase of 0.86% in crystal lattice spacing and 3.2% in particle size after fully sodiation. Consequently, as a sodium-ion battery anode, the nanocomposite delivers high capacity and superior rate capability along with ultralong cycling life. This work proposes a novel pressure-induced synthesis strategy that provides unique guidance for designing TiO2 -based anode materials with high capacity and excellent fast-charging capability.

2.
Nanomicro Lett ; 16(1): 86, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214843

RESUMO

Improving the long-term cycling stability and energy density of all-solid-state lithium (Li)-metal batteries (ASSLMBs) at room temperature is a severe challenge because of the notorious solid-solid interfacial contact loss and sluggish ion transport. Solid electrolytes are generally studied as two-dimensional (2D) structures with planar interfaces, showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces. Herein, three-dimensional (3D) architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment. Multiple-type electrolyte films with vertical-aligned micro-pillar (p-3DSE) and spiral (s-3DSE) structures are rationally designed and developed, which can be employed for both Li metal anode and cathode in terms of accelerating the Li+ transport within electrodes and reinforcing the interfacial adhesion. The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm-2. The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm-2 (LFP) and 3.92 mAh cm-2 (NCM811). This unique design provides enhancements for both anode and cathode electrodes, thereby alleviating interfacial degradation induced by dendrite growth and contact loss. The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.

3.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038203

RESUMO

The pursuit of advanced materials to meet the escalating demands of energy storage system has led to the emergence of vertical graphene (VG) as a highly promising candidate. With its remarkable strength, stability, and conductivity, VG has gained significant attention for its potential to revolutionize energy storage technologies. This comprehensive review delves deeply into the synthesis methods, structural modifications, and multifaceted applications of VG in the context of lithium-ion batteries, silicon-based lithium batteries, lithium-sulfur batteries, sodium-ion batteries, potassium-ion batteries, aqueous zinc batteries, and supercapacitors. The review elucidates the intricate growth process of VG and underscores the paramount importance of optimizing process parameters to tailor VG for specific applications. Subsequently, the pivotal role of VG in enhancing the performance of various energy storage and conversion systems is exhaustively discussed. Moreover, it delves into structural improvement, performance tuning, and mechanism analysis of VG composite materials in diverse energy storage systems. In summary, this review provides a comprehensive look at VG synthesis, modification, and its wide range of applications in energy storage. It emphasizes the potential of VG in addressing critical challenges and advancing sustainable, high-performance energy storage devices, providing valuable guidance for the development of future technologies.

4.
Nat Commun ; 14(1): 4205, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452017

RESUMO

Metallic zinc anodes of aqueous zinc ion batteries suffer from severe dendrite and side reaction issues, resulting in poor cycling stability, especially at high rates and capacities. Herein, we develop two three-dimensional hierarchical graphene matrices consisting of nitrogen-doped graphene nanofibers clusters anchored on vertical graphene arrays of modified multichannel carbon. The graphene matrix with radial direction carbon channels possesses high surface area and porosity, which effectively minimizes the surface local current density, manipulates the Zn2+ ions concentration gradient, and homogenizes the electric field distribution to regulate Zn deposition. As a result, the engineered matrices achieve a superior coulombic efficiency of 99.67% over 3000 cycles at 120 mA cm-2, the symmetric cells with the composite zinc anode demonstrates 2600 h dendrite-free cycles at 80 mA cm-2 and 80 mAh cm-2. The as-designed full cell exhibits an inspiring capacity of 16.91 mAh cm-2. The Zn capacitor matched with activated carbon shows a superior long-term cycle performance of 20000 cycles at 40 mA cm-2. This strategy of constructing a 3D hierarchical structure for Zn anodes may open up a new avenue for metal anodes operating under high rates and capacities.


Assuntos
Grafite , Carvão Vegetal , Fontes de Energia Elétrica , Eletrodos , Zinco
5.
Sci Bull (Beijing) ; 68(13): 1379-1388, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336686

RESUMO

Lithium (Li) metal with low electrochemical potential and high theoretical capacity is a promising anode material for next-generation batteries. However, the low reversibility and safety problems caused by the notorious dendrite growth significantly impede the development of high-energy-density lithium metal batteries (LMBs). Here, to enable a dendrite-free and highly reversible Li metal anode (LMA), we develop a cytomembrane-inspired artificial layer (CAL) with biomimetic ionic channels using a scalable spread coating method. The negatively charged CAL with uniform intraparticle and interparticle ionic channels facilitates the Li-ion transport and redistributes the Li-ion flux, contributing to stable and homogeneous Li stripping and plating. Furthermore, a robust underneath transition layer with abundant lithiophilic inorganic components is in-situ formed through the transformation of CAL during cycling, which promotes Li-ion diffusion and suppresses the continuous side reactions with the electrolyte. Additionally, the resulting cytomembrane-inspired artificial Janus layer (CAJL) displays an ultrahigh Young's modulus (≥10.7 GPa) to inhibit the dendrite growth. Consequently, the CAJL-protected LMA (Li@CAJL) is stably cycled with a high areal capacity of 10 mAh cm-2 at a high current density of 10 mA cm-2. More importantly, the effective CAJL modification realizes the stable operation of a practical 429.2 Wh kg-1 lithium-sulfur (Li-S) pouch cell using a low electrolyte/sulfur (E/S) ratio of 3 µL mg-1. The facile yet effective protection strategy of LMAs can promote the practical application of LMBs.

6.
Small ; 19(38): e2301261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222124

RESUMO

Perovskite oxides stand out as emerging oxygen evolution reaction (OER) catalysts on account of their effective electrocatalytic performance and low costs. Nevertheless, perovskite oxides suffer from severe bubble overpotential and inhibited electrochemical performance in large current densities due to their small specific surface areas and structural compactness. Herein, the study highlights the electrospun nickel-substituted La0.5 Sr0.5 FeO3-δ (LSF) porous perovskite nanofibers, that is, La0.5 Sr0.5 Fe1-x Nix O3-δ (denoted as ES-LSFN-x, x = 0, 0.1, 0.3, and 0.5), as high-performance OER electrocatalysts. The most effective La0.5 Sr0.5 Fe0.5 Ni0.5 O3-δ (ES-LSFN-0.5) nanofibers suggest a larger specific surface area, higher porosity, and faster mass transfer than the counterpart sample prepared by conventional sol-gel method (SG-LSFN-0.5), showing notably increased geometric and intrinsic activities. The bubble visualization results demonstrate that the enriched and nano-sized porosity of ES-LSFN-0.5 enables reinforced aerophobicity and rapid detachment of oxygen bubbles, thereby reducing the bubble overpotential and enhancing the electrochemical performance. As a result, the ES-LSFN-0.5-based anion exchange membrane water electrolysis delivers a superior stability of 100 h while the SG-LSFN-0.5 counterpart degrades rapidly within 20 h under a current density of 100 mA cm-2 . The results highlight the advantage of porous electrocatalysts in optimizing the performance of large current density water electrolysis devices by reducing the bubble overpotential.

7.
J Colloid Interface Sci ; 643: 455-464, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088049

RESUMO

The development of highly efficient hydrogen evolution electrocatalysts with platinum-like activity requires precise control of active sites through interface engineering strategies. In this study, a heterostructured Co5.47N/Mo5N6 catalyst (CoMoNx) on carbon cloth (CC) was synthesized using a combination of dip-etching and vapor nitridation methods. The rough nanosheet surface of the catalyst with uniformly distributed elements exposes a large active surface area and provides abundant interface sites that serve as additional active sites. The CoMoNx was found to exhibit exceptional hydrogen evolution reaction (HER) activity with a low overpotential of 44 mV at 10 mA cm-2 and exceptional stability of 100 h in 1.0 M KOH. The CoMoNx(-)||RuO2(+) system requires only 1.81 V cell voltage to reach a current density of 200 mA cm-2, surpassing the majority of previously reported electrolyzers. Density functional theory (DFT) calculations reveal that the strong synergy between Co5.47N and Mo5N6 at the interface can significantly reduce the water dissociation energy barrier, thereby improving the kinetics of hydrogen evolution. Furthermore, the rough nanosheet architecture of the CoMoNx catalyst with abundant interstitial spaces and multi-channels enhances charge transport and reaction intermediate transportation, synergistically improving the performance of the HER for water splitting.

8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047010

RESUMO

Aqueous zinc-ion batteries (AZIBs) are promising for large-scale energy storage systems due to their high safety, large capacity, cost-effectiveness, and environmental friendliness. However, their commercialization is currently hindered by several challenging issues, including cathode degradation and zinc dendrite growth. Recently, metal-organic frameworks (MOFs) and their derivatives have gained significant attention and are widely used in AZIBs due to their highly porous structures, large specific surface area, and ability to design frameworks for Zn2+ shuttle. Based on preceding contributions, this review aims to generalize two design principles for MOF-based materials in AZIBs: cathode preparation and anode protection. For cathode preparation, we mainly introduce novel MOF-based electrode materials such as pure MOFs, porous carbon materials, metal oxides, and their compounds, focusing on the analysis of the specific capacity of AZIBs. For anode protection, we systematically analyze MOF-based materials used as 3D Zn architecture, solid electrolyte interfaces, novel separators, and solid-state electrolytes, highlighting the improvement in the cyclic stability of Zn anodes. Finally, we propose the future development of MOF-based materials in AZIBs. Our work can give some clues for raising the practical application level of aqueous ZIBs.


Assuntos
Estruturas Metalorgânicas , Zinco , Íons , Óxidos , Carbono
10.
Adv Mater ; 35(21): e2212308, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913606

RESUMO

Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8 Co0.1 Mn0.1 O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα- (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs).

11.
Adv Mater ; 35(2): e2207041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281800

RESUMO

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

12.
Adv Sci (Weinh) ; 9(30): e2203321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35999430

RESUMO

Lithium (Li) dendrite formation and poor Li+ transport kinetics under high-charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowalls (VGWs@MCF) as a multifunctional host to efficiently regulate Li deposition and accelerate Li+ transport. A novel electrode for both Li|VGWs@MCF anode and LFP|VGWs@MCF (NCM811 |VGWs@MCF) cathode is designed and fabricated using a dual vertically aligned architecture. This unique hierarchical structure provides ultrafast, continuous, and smooth electron transport channels; furthermore, it furnishes outstanding mechanical strength to support massive Li deposition at ultrahigh rates. As a result, the Li|VGWs@MCF anode exhibits outstanding cycling stability at ultrahigh currents and capacities (1000 h at 10 mA cm-2 and 10 mAh cm-2 , and 1000 h at 30 mA cm-2 and 60 mAh cm-2 ). Moreover, full cells made of such 3D anodes and freestanding LFP|VGWs@MCF (NCM811 |VGWs@MCF) cathodes with conspicuous mass loading (45 mg cm-2 for LFP and 35 mg cm-2 for NCM811 ) demonstrate excellent areal capacities (6.98 mAh cm-2 for LFP and 5.6 mAh cm-2 for NCM811 ). This strategy proposes a promising direction for the development of high-energy-density practical Li batteries that combine safety, performance, and sustainability.

13.
ACS Appl Mater Interfaces ; 14(7): 9264-9271, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138786

RESUMO

Seeking fast proton transport pathways at ambient conditions is desirable but challenging. Here, we report a strategy to synthesize a composite material with a polyoxometalate (POM) and an ionic liquid (IL) confined in stable metal-organic framework (MOF) channels through electrostatic interaction. The obtained SO3H-IL-PMo12@MIL-101 possesses fast proton transfer, and its proton conductivity can reach 1.33 × 10-2 S cm-1 at ambient conditions (30 °C, 70% relative humidity (RH)), which is the highest value among the MOF-based proton conductors operated in an ambient environment. Therefore, it has the potential of becoming a room-temperature proton conductor without a humidifier. Importantly, the composite material is further fabricated into a composite membrane for proton-exchange membrane fuel cells (PEMFCs), which can deliver a power density of 0.93 mW cm-2 at 30 °C and 98% RH. This result can lay a fundamental basis for the application of MOF-based proton conductors in the area of electrochemical energy conversion.

14.
Adv Sci (Weinh) ; 9(6): e2104685, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34989153

RESUMO

Free-standing and foldable electrodes with high energy density and long lifespan have recently elicited attention on the development of lithium-ion batteries (LIBs) for flexible electronic devices. However, both low energy density and slow kinetics in cycling impede their practical applications. In this work, a free-standing and binder-free N, O-codoped 3D vertical graphene carbon nanofibers electrode with ultra-high silicon content (VGAs@Si@CNFs) is developed via electrospinning, subsequent thermal treatment, and chemical vapor deposition processes. The as-prepared VGAs@Si@CNFs electrode exhibits excellent conductivity and flexibility because of the high graphitized carbon nanofiber network and abundant vertical graphene arrays. Such 3D all-carbon architecture can be fabulous for providing a conductive and mechanically robust network, further improving the kinetics and restraining the volume expansion of Si NPs, especially with an ultra-high Si content (>90 wt%). As a result, the VGAs@Si@CNFs composite demonstrates a superior specific capacity (3619.5 mAh g-1 at 0.05 A g-1 ), ultralong lifespan, and outstanding rate capability (1093.1 mAh g-1 after 1500 cycles at 8 A g-1 ) as a free-standing anode for LIBs. It is believed that this work offers an exciting method for developing free-standing and high-energy-density electrodes for other energy storage devices.

15.
Nat Commun ; 12(1): 1380, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654075

RESUMO

Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm-2 and small Tafel slope of 29.2 mV dec-1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm-2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.

16.
ACS Appl Mater Interfaces ; 12(42): 47623-47633, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047606

RESUMO

The ever-growing demand for energy in the consumer market has put higher requirements on the energy density of Li-ion batteries. Many researchers have strived to discover new electrode materials with higher capacity, while little attention has been focused on improving the cell structure. How to increase the thickness of conventional slurry-cast electrodes as well as decrease the charge transfer resistance by improving the electrode structure is an urgent problem for enhancing the energy density of Li-ion batteries. Here, a porous Cu film is developed to replace the conventional Cu foil current collector, and a thick graphite anode (300 µm) is engineered by two-side slurry casting. The anode delivers a maximum capacity of 18 mAh cm-2 or 301.3 mAh g-1 under a highly active mass loading of 60 mg cm-2, much higher than that fabricated on Cu foil. The assembled full cell with the graphite anode and the LiFePO4 cathode achieves high energy densities of 36.2 mWh cm-2 and 283.3 Wh kg-1. Systematic experimental and simulation investigations reveal the enhanced performance benefits from the facilitated charge transfer efficiency by the porous Cu current collector. This work provides a new strategy for engineering thick electrodes for high-energy Li-ion batteries by improving the conventional electrode structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...