Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1387-1393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081724

RESUMO

Strains of Xanthomonas citri pv. malvacearum cause bacterial blight of cotton, a potentially serious threat to cotton production worldwide, including in sub-Saharan countries. Development of disease symptoms, such as water soaking, has been linked to the activity of a class of type 3 effectors, called transcription activator-like (TAL) effectors, which induce susceptibility genes in the host's cells. To gain further insight into the global diversity of the pathogen, to elucidate their repertoires of TAL effector genes, and to better understand the evolution of these genes in the cotton-pathogenic xanthomonads, we sequenced the genomes of three African strains of X. citri pv. malvacearum using nanopore technology. We show that the cotton-pathogenic pathovar of X. citri is a monophyletic lineage containing at least three distinct genetic subclades, which appear to be mirrored by their repertoires of TAL effectors. We observed an atypical level of TAL effector gene pseudogenization, which might be related to resistance genes that are deployed to control the disease. Our work thus contributes to a better understanding of the conservation and importance of TAL effectors in the interaction with the host plant, which can inform strategies for improving resistance against bacterial blight in cotton.

2.
BMC Genomics ; 22(1): 795, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740326

RESUMO

BACKGROUND: Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. RESULTS: Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. CONCLUSIONS: This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.


Assuntos
Phytophthora infestans , Solanum tuberosum , Elementos de DNA Transponíveis , Evolução Molecular , Duplicação Gênica , Filogenia , Phytophthora infestans/genética , Doenças das Plantas , Solanum tuberosum/genética
3.
Curr Opin Virol ; 51: 207-215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781105

RESUMO

Historically, virus taxonomy has been limited to describing viruses that were readily cultivated in the laboratory or emerging in natural biomes. Metagenomic analyses, single-particle sequencing, and database mining efforts have yielded new sequence data on an astounding number of previously unknown viruses. As metagenomes are relatively free of biases, these data provide an unprecedented insight into the vastness of the virosphere, but to properly value the extent of this diversity it is critical that the viruses are taxonomically classified. Inclusion of uncultivated viruses has already improved the process as well as the understanding of the taxa, viruses, and their evolutionary relationships. The continuous development and testing of computational tools will be required to maintain a dynamic virus taxonomy that can accommodate the new discoveries.


Assuntos
Filogenia , Vírus/classificação , Animais , Evolução Molecular , Humanos , Metagenômica , Vírus/genética , Vírus/crescimento & desenvolvimento
4.
Front Chem ; 9: 700802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422762

RESUMO

Fragment-based drug design (FBDD) and pharmacophore modeling have proven to be efficient tools to discover novel drugs. However, these approaches may become limited if the collection of fragments is highly repetitive, poorly diverse, or excessively simple. In this article, combining pharmacophore modeling and a non-classical type of fragmentation (herein called non-extensive) to screen a natural product (NP) library may provide fragments predicted as potent, diverse, and developable. Initially, we applied retrosynthetic combinatorial analysis procedure (RECAP) rules in two versions, extensive and non-extensive, in order to deconstruct a virtual library of NPs formed by the databases Traditional Chinese Medicine (TCM), AfroDb (African Medicinal Plants database), NuBBE (Nuclei of Bioassays, Biosynthesis, and Ecophysiology of Natural Products), and UEFS (Universidade Estadual de Feira de Santana). We then developed a virtual screening (VS) using two groups of natural-product-derived fragments (extensive and non-extensive NPDFs) and two overlapping pharmacophore models for each of 20 different proteins of therapeutic interest. Molecular weight, lipophilicity, and molecular complexity were estimated and compared for both types of NPDFs (and their original NPs) before and after the VS proceedings. As a result, we found that non-extensive NPDFs exhibited a much higher number of chemical entities compared to extensive NPDFs (45,355 vs. 11,525 compounds), accounting for the larger part of the hits recovered and being far less repetitive than extensive NPDFs. The structural diversity of both types of NPDFs and the NPs was shown to diminish slightly after VS procedures. Finally, and most interestingly, the pharmacophore fit score of the non-extensive NPDFs proved to be not only higher, on average, than extensive NPDFs (56% of cases) but also higher than their original NPs (69% of cases) when all of them were also recognized as hits after the VS. The findings obtained in this study indicated that the proposed cascade approach was useful to enhance the probability of identifying innovative chemical scaffolds, which deserve further development to become drug-sized candidate compounds. We consider that the knowledge about the deconstruction degree required to produce NPDFs of interest represents a good starting point for eventual synthesis, characterization, and biological activity studies.

7.
Sci Rep ; 8(1): 14636, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279438

RESUMO

Microbiome disruptions triggering disease outbreaks are increasingly threatening corals worldwide. In the Tropical Eastern Pacific, a necrotic-patch disease affecting gorgonian corals (sea fans, Pacifigorgia spp.) has been observed in recent years. However, the composition of the microbiome and its disease-related disruptions remain unknown in these gorgonian corals. Therefore, we analysed 16S rRNA gene amplicons from tissues of healthy colonies (n = 19) and from symptomatic-asymptomatic tissues of diseased colonies (n = 19) of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) in order to test for disease-related changes in the bacterial microbiome. We found that potential endosymbionts (mostly Endozoicomonas spp.) dominate the core microbiome in healthy colonies. Moreover, healthy tissues differed in community composition and functional profile from those of the symptomatic tissues but did not show differences to asymptomatic tissues of the diseased colonies. A more diverse set of bacteria was observed in symptomatic tissues, together with the decline in abundance of the potential endosymbionts from the healthy core microbiome. Furthermore, according to a comparative taxonomy-based functional profiling, these symptomatic tissues were characterized by the increase in heterotrophic, ammonia oxidizer and dehalogenating bacteria and by the depletion of nitrite and sulphate reducers. Overall, our results suggest that the bacterial microbiome associated with the disease behaves opportunistically and is likely in a state of microbial dysbiosis. We also conclude that the confinement of the disease-related consortium to symptomatic tissues may facilitate colony recovery.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Microbiota/genética , Animais , Oceano Pacífico , Filogenia , RNA Bacteriano , RNA Ribossômico 16S , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...