Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Anal Chem ; 96(40): 15852-15858, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39236255

RESUMO

Three-dimensional (3D) printing is an emerging technology to develop devices on a large scale with potential application for electroanalysis. However, 3D-printed electrodes, in their native form, provide poor electrochemical response due to the presence of a high percentage of thermoplastic polymer in the conductive filaments. Therefore, surface treatments are usually required to remove the nonconductive material from the 3D-printed electrode surfaces, providing a dramatic improvement in the electroanalytical performance. However, these procedures are time-consuming, require bulky equipment, or even involve non-eco-friendly protocols. Herein, we demonstrated that portable and low-cost atmospheric air plasma jet pens can be used to activate electrodes additively manufactured using a commercial poly(lactic acid) filament containing carbon black as conductive filler, improving the electrochemical activity. Remarkable electrochemical results were obtained (voltammetric profile) using [Fe(CN)6]3-/4-, dopamine and [Ru(NH3)6]2+/3+ as redox probes. Microscopic, spectroscopic, and electrochemical techniques revealed that the air-plasma jet pen removes the excess PLA on the 3D-printed electrode surface, exposing the conductive carbon black particles and increasing the surface area. The performance of the treated electrode was evaluated by the quantification of capsaicin in pepper sauce samples, with a limit of detection of 3 nM, suitable for analysis of food samples. Recovery values from 94% to 101% were obtained for the analysis of spiked samples. The new treatment generated by a plasma jet pen is an alternative approach to improve the electrochemical activity of 3D-printed electrodes that present sluggish kinetics with great advantages over previous protocols, including low-cost, short time of treatment (2 min), environmentally friendly protocol (reagentless), and portability (hand-held pen).

2.
Mikrochim Acta ; 191(10): 633, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342530

RESUMO

The development of a tailored filament is reported composed of reduced graphene oxide (rGO) and carbon black (CB) in a polylactic acid (PLA) matrix and its use in the production of electrochemical sensors. The electrodes containing rGO showed superior performance when compared with  those prepared in the absence of this material. Physicochemical and electrochemical characterizations of the electrodes showed the successful incorporation of both rGO and CB and an improved conductivity in the presence of rGO (lower resistance to charge transfer). As a proof-of-concept, the developed electrodes were applied to the detection of the forensic analytes TNT and cocaine. The electrodes containing rGO presented a superior analytical performance for both TNT and cocaine detection, showing the lower limit of detection values (0.22 and 2.1 µmol L-1, respectively) in comparison with pure CB-PLA electrodes (0.93 and 11.3 µmol L-1, respectively). Besides, better-defined redox peaks were observed, especially for TNT, as well as increased sensitivity for both molecules.

3.
Micromachines (Basel) ; 15(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930761

RESUMO

3D printing represents an emerging technology in several fields, including engineering, medicine, and chemistry [...].

4.
Mikrochim Acta ; 191(7): 396, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877161

RESUMO

The development of a portable analytical procedure is described for rapid sequential detection and quantification of the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) in forensic samples using a graphite sheet (GS). A single GS platform works as a collector of explosive residues and detector after its assembly into a 3D-printed cell. The detection strategy is based on cyclic square-wave stripping voltammetry. The cathodic scan from + 0.1 to -1.0 V with accumulation at 0.0 V enables the TNT detection (three reduction peaks), and the anodic scan from + 0.2 to + 1.55 V with accumulation at -0.9 V provides the RDX detection (two oxidation processes). Low detection limit values (0.1 µmol L-1 for TNT and 2.4 µmol L-1 for RDX) and wide linear ranges (from 1 to 150 µmol L-1 for TNT and from 20 to 300 µmol L-1 for RDX) were obtained. The sensor did not respond to pentaerythritol tetranitrate (PETN), which was evaluated as a potential interferent, because plastic explosives contain mixtures of TNT, RDX, and PETN. The GS electrode was also evaluated as a collector of TNT and RDX residues spread on different surfaces to simulate forensic scenarios. After swiping over different surfaces (metal, granite, wood, cloths, hands, money bills, and cellphone), the GS electrode was assembled in the 3D-printed cell ready to measure both explosives by the proposed method. In all cases, the presence of TNT and RDX was confirmed, attesting the reliability of the proposed device to act as collector and sensor.

5.
Anal Methods ; 16(25): 4136-4142, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38860551

RESUMO

The ivermectin (IVM), as a broad-spectrum antiparasitic drug, was widely prescribed to treat COVID-19 during the pandemic, despite lacking proven efficacy in combating this disease. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. The laser engraving technology has been revolutionary in sensor manufacturing, primarily attributed to the diversity of substrates that can be employed and the freedom it provides in creating sensor models. In this work, electrochemical sensors based on graphene were developed using the laser engraving technology for IVM sensing. Through, the studies that used the techniques of cyclic voltammetry and differential pulse voltammetry, following parameter optimization, for the laser-induced graphene electrode demonstrated a mass transport governed by adsorption of the species and exhibited a linear working range of 10-100 (µmol L-1), a limit of detection (LOD) of 1.6 × 10-6 (mol L-1), a limit of quantification (LOQ) of 4.8 × 10-6 (mol L-1), and a sensitivity of 0.139 (µA µmol L-1). The developed method was successfully applied to direct analysis of pharmaceutical tablets, tap water (recovery of 94%) and synthetic urine samples (recovery between 97% and 113%). These results demonstrate the feasibility of the method for routine analyses involving environmental samples.


Assuntos
Técnicas Eletroquímicas , Grafite , Ivermectina , Lasers , Ivermectina/análise , Ivermectina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Grafite/química , Humanos , Limite de Detecção , Antiparasitários/urina , Antiparasitários/análise , Antiparasitários/química , Eletrodos , COVID-19 , SARS-CoV-2
6.
Analyst ; 149(15): 3900-3909, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38912921

RESUMO

3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.

7.
Talanta ; 276: 126237, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776769

RESUMO

Lysergic acid diethylamide (LSD) and two phenethylamine classes (NBOHs and NBOMes) are the main illicit drugs found in seized blotter papers. The preliminary identification of these substances is of great interest for forensic analysis. In this context, this work constitutes the inaugural demonstration of an efficient methodology for the selective detection of LSD, NBOHs, and NBOMes, utilizing a fully 3D-printed electrochemical double cell (3D-EDC). This novel 3D-EDC enables the use of two working electrodes and/or two supporting electrolytes (at different pHs) in the same detection system, with the possibility of shared or individual auxiliary and pseudo-reference electrodes. Thus, the selective voltammetric detection of these substances is proposed using two elegant strategies: (i) utilizing the same 3D-EDC platform with two working electrodes (boron-doped diamond (BDD) and 3D-printed graphite), and (ii) employing two pH levels (4.0 and 12.0) with 3D-printed graphite electrode. This comprehensive framework facilitates a fast, robust, and uncomplicated electrochemical analysis. Moreover, this configuration enables a rapid and sensitive detection of LSD, NBOHs, and NBOMes in seized samples, and can also provide quantitative analysis. The proposed method showed good stability of the electrochemical response with RSD <9 % for Ip and <5 % for Ep, evaluating all oxidation processes observed for studied analytes (n = 7) at two pH levels, using the same and different (n = 3) working electrodes. It demonstrates a broad linear range (20-100 and 20-70 µmol L-1) and a low LOD (1.0 µmol L-1) for quantification of a model molecule (LSD) at the two pHs studied. Hence, the 3D-EDC combined with voltammetric techniques using BDD and 3D-printed graphite electrodes on the same platform, or only with this last sensor at two pH values, provide a practical and robust avenue for preliminary identification of NBOHs, NBOMes, and LSD. This method embodies ease, swiftness, cost-efficiency, robustness, and selectivity as an on-site screening tool for forensic analysis.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Dietilamida do Ácido Lisérgico , Impressão Tridimensional , Dietilamida do Ácido Lisérgico/análogos & derivados , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/análise , Técnicas Eletroquímicas/métodos , Fenetilaminas/análise , Drogas Ilícitas/análise , Humanos , Limite de Detecção , Grafite/química
9.
Mikrochim Acta ; 190(10): 379, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682352

RESUMO

Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 µmol L-1), CIP (0.01 µmol L-1) and SFL (0.11 µmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.


Assuntos
Cloranfenicol , Grafite , Ciprofloxacina , Sulfanilamida , Dióxido de Carbono , Eletrodos
10.
Chemosphere ; 340: 139796, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586488

RESUMO

Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s). Two reduction processes at around -0.22 V and -0.36 V were selected for TNT detection, with linear ranges between 1.0 and 10.0 µM. Moreover, detection limits of 0.52 and 0.66 µM were achieved for both reduction steps. The proposed method was applied to determine TNT in different environmental water samples (tap water, river water, and seawater) without a dilution step (direct analysis). Recovery values between 98 and 106% confirmed the accuracy of the analyses. Additionally, adequate selectivity was achieved even in the presence of other explosives commonly used by military agencies, metallic ions commonly found in water, and also some electroactive camouflage species. Such results indicate that the proposed device is promising to quantify TNT residues in environmental samples, a viable on-site analysis strategy.


Assuntos
Substâncias Explosivas , Grafite , Trinitrotolueno , Trinitrotolueno/análise , Grafite/química , Substâncias Explosivas/análise , Poliésteres , Eletrodos , Água , Impressão Tridimensional , Técnicas Eletroquímicas/métodos
11.
Mikrochim Acta ; 190(8): 297, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460848

RESUMO

A new electrochemical device fabricated by the combination of 3D printing manufacturing and laser-generated graphene sensors is presented. Cell and electrodes were 3D printed by the fused deposition modeling (FDM) technique employing acrylonitrile butadiene styrene filament (insulating material that composes the cell) and conductive filament (lab-made filament based on graphite dispersed into polylactic acid matrix) to obtain reference and auxiliary electrodes. Infrared-laser engraved graphene, also reported as laser-induced graphene (LIG), was produced by laser conversion of a polyimide substrate, which was assembled in the 3D-printed electrochemical cell that enables the analysis of low volumes (50-2000 µL). XPS analysis revealed the formation of nitrogen-doped graphene multilayers that resulted in excellent electrochemical sensing properties toward the detection of atropine (ATR), a substance that was found in beverages to facilitate sexual assault and other criminal acts. Linear range between 5 and 35 µmol L-1, detection limit of 1 µmol L-1, and adequate precision (RSD = 4.7%, n = 10) were achieved using differential-pulse voltammetry. The method was successfully applied to beverage samples with recovery values ranging from 80 to 105%. Interference studies in the presence of species commonly found in beverages confirmed satisfactory selectivity for ATR sensing. The devices proposed are useful portable analytical tools for on-site applications in the forensic scenario.

12.
Biosensors (Basel) ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367011

RESUMO

A rapid and simple method for the amperometric determination of glucose using a nanocomposite film of nickel oxyhydroxide and multi-walled carbon nanotube (MWCNTs) was evaluated. The NiHCF)/MWCNT electrode film was fabricated using the liquid-liquid interface method, and it was used as a precursor for the electrochemical synthesis of nickel oxy-hydroxy (Ni(OH)2/NiOOH/MWCNT). The interaction between nickel oxy-hydroxy and the MWCNTs provided a film that is stable over the electrode surface, with high surface area and excellent conductivity. The nanocomposite presented an excellent electrocatalytic activity for the oxidation of glucose in an alkaline medium. The sensitivity of the sensor was found to be 0.0561 µA µmol L-1, and a linear range from 0.1 to 150 µmol L-1 was obtained, with a good limit of detection (0.030 µmol L-1). The electrode exhibits a fast response (150 injections h-1) and a sensitive catalytic performance, which may be due to the high conductivity of MWCNT and the increased active surface area of the electrode. Additionally, a minimal difference in the slopes for ascending (0.0561 µA µmol L-1) and descending (0.0531 µA µmol L-1) was observed. Moreover, the sensor was applied to the detection of glucose in artificial plasma blood samples, achieving values of 89 to 98% of recovery.


Assuntos
Nanotubos de Carbono , Níquel , Glucose , Oxirredução , Eletrodos , Impressão Tridimensional , Técnicas Eletroquímicas/métodos
13.
Talanta ; 265: 124810, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364384

RESUMO

In this work, an electrochemical method was developed for rapid and sensitive detection of hydroxychloroquine (HCQ), an ineffective candidate drug for COVID-19 treatment however widely consumed during the pandemic, in aqueous samples using a multi-walled carbon nanotubes (MWCNT) film produced through the interfacial method on the indium tin oxide electrode (ITO). According to Raman spectroscopy, X-ray diffraction, UV-vis spectroscopy, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy, the interfacial method produces homogeneous thin films of carbon nanotubes on the substrate surface, which keep connected to the surface forming a three-dimensional microporous structure. The electrochemical behavior and oxidation kinetics of HCQ were also investigated in the MWCNT film. The sensor showed a 7 times higher oxidation current for (69.88 µA) for HCQ than the ITO electrode (9.33 µA) due to the electrocatalytic properties MWCNTs. The ITO-modified electrode was assembled on a portable 3D-printed batch-injection cell for the amperometric detection of HCQ. The oxidation peak current of HCQ is linearly proportional to the concentrations of HCQ ranging from 1.0 to 100.0 µmol L-1, with a limit of detection of 0.27 µmol L-1. Water samples (river and tap water) were spiked with HCQ, without the need for dispendious pretreatment (except filtration), and analyzed by the portable system, revealing the detection of HCQ with the recovery of 92.0%-99.8%, which suggested the great potential for real environmental monitoring application.

14.
Talanta ; 265: 124832, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354624

RESUMO

Fused deposition modeling (FDM) 3D printing is a promising additive manufacturing technique to produce low-cost disposable electrochemical devices. However, the print of devices like well-known screen-printed electrodes (all electrodes on the same device) is difficult using the available technology (few materials available for production of working electrodes). In this paper we present a procedure to produce disposable and robust electrochemical devices by FDM 3D printing that allows reproducible analysis of small volumes (50-2000 µL). The device consists of just two printed parts that allow easy coupling of different conductive materials for using as disposable or non-disposable working electrodes with reproducible geometric area. Printed counter and pseudo-reference electrodes can also be easily fitted into the microcell. Moreover, conventional counter (platinum wire) and mini reference electrodes can also be used. As a proof of concept, paracetamol, cocaine and uric acid were used as model analytes using different materials as working electrodes. Linear calibration curves (r > 0.99) with similar slopes (0.29 ± 0.01 µA µmol L-1; RSD = 3.4%) were obtained by square wave voltammetry (SWV) using a complete printed system and different volumes of standard solutions of paracetamol (50, 100, and 200 µL). For uric acid, a linear range of 10-125 µmol L-1 (r > 0.99), was obtained using differential pulse voltammetry as the electrochemical technique and a disposable laser-induced graphene base as the working electrode. With the coupling of boron-doped diamond working electrode, screening tests were successfully performed in seized cocaine samples with selective detection of cocaine in the presence of its most common adulterants. The production cost per unit of a complete electrochemical system is around US 5.00. In large-scale production, only the working electrode needs to be replaced while the microcell and counter/pseudo reference electrodes do not need to be discarded.

15.
Talanta ; 259: 124536, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062090

RESUMO

Antibiotics such as tetracycline (TC) are widely prescribed to treat humans or dairy animals. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. 3D printing has proven to be a powerful and cost-effective tool that revolutionizes many applications in electrochemical sensing. In this work, we employ a conductive filament based on graphite (Gr) and polylactic acid (PLA) (40:60; w/w; synthesized in our lab) to manufacture 3D-printed electrodes. This electrode was used "as printed" and coupled to batch injection analysis with amperometric detection (BIA-AD) for TC sensing. Preliminary studies by cyclic voltammetry and differential pulse voltammetry revealed a mass transport governed by adsorption of the species and consequent fouling of the redox products on the 3D printed surface. Thus, a simple strategy (solution stirring and application of successive potentials, +0.95 V followed by +1.2 V) was associated with the BIA-AD system to solve this effect. The proposed electrode showed analytical performance comparable to costly conventional electrodes with linear response ranging from 0.5 to 50 µmol L-1 and a detection limit of 0.19 µmol L-1. Additionally, the developed method was applied to pharmaceutical, tap water, and milk samples, which required minimal sample preparation (simple dilution). Recovery values of 92-117% were obtained for tap water and milk samples, while the content found of TC in the capsule was close to the value reported by the manufacturer. These results indicate the feasibility of the method for routine analysis involving environmental, pharmaceutical, and food samples.


Assuntos
Laboratórios , Tetraciclina , Animais , Humanos , Antibacterianos , Impressão Tridimensional , Eletrodos , Água , Preparações Farmacêuticas , Técnicas Eletroquímicas
16.
Mikrochim Acta ; 190(2): 63, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670263

RESUMO

The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode's polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 µmol L-1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.


Assuntos
Terapia a Laser , Nanoestruturas , Humanos , Dióxido de Carbono , Nanoestruturas/química , Oxirredução , Impressão Tridimensional
17.
J Agric Food Chem ; 71(6): 3060-3067, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720110

RESUMO

Sulfanilamide (SFL) is used to prevent infections in honeybees. However, many regulatory agencies prohibit or establish maximum levels of SFL residues in honey samples. Hence, we developed a low-cost and portable electrochemical method for SFL detection using a disposable device produced through 3D printing technology. In the proposed approach, the working electrode was printed using a conductive filament based on carbon black and polylactic acid and it was associated with square wave voltammetry (SWV). Under optimized SWV parameters, linear concentration ranges (1-10 µmol L-1 and 12.5-35.0 µmol L-1), a detection limit of 0.26 µmol L-1 (0.05 mg L-1), and suitable RSD values (2.4% for inter-electrode; n = 3) were achieved. The developed method was selective in relation to other antibiotics applied in honey samples, requiring only dilution in the electrolyte. The recovery values (85-120%) obtained by SWV were statistically similar (95% confidence level) to those obtained by HPLC, attesting to the accuracy of the analysis and the absence of matrix interference.


Assuntos
Mel , Fuligem , Animais , Fuligem/química , Sulfanilamida , Eletroquímica , Eletrodos , Técnicas Eletroquímicas , Carbono/química
18.
Biosensors (Basel) ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140146

RESUMO

Silver materials are known to present excellent properties, such as high electrical and thermal conductivity as well as chemical stability. Silver-based inks have drawn a lot of attention for being compatible with various substrates, which can be used in the production uniform and stable pseudo-reference electrodes with low curing temperatures. Furthermore, the interest in the use of disposable electrodes has been increasing due to the low cost and the possibility of their use in point-of-care and point-of-need situations. Thus, in this work, two new inks were developed using Ag as conductive material and colorless polymers (nail polish (NP) and shellac (SL)), and applied to different substrates (screen-printed electrodes, acetate sheets, and 3D-printed electrodes) to verify the performance of the proposed inks. Measurements attained with open circuit potential (OCP) attested to the stability of the potential of the pseudo-reference proposed for 1 h. Analytical curves for ß-estradiol were also obtained using the devices prepared with the proposed inks as pseudo-references electrodes, which presented satisfactory results concerning the potential stability (RSD < 2.6%). These inks are simple to prepare and present great alternatives for the development of pseudo-reference electrodes useful in the construction of disposable electrochemical systems.


Assuntos
Tinta , Prata , Eletrodos , Estradiol , Polímeros/química , Prata/química
19.
Biosensors (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005018

RESUMO

A low-cost and disposable graphene polylactic (G-PLA) 3D-printed electrode modified with gold particles (AuPs) was explored to detect the cDNA of SARS-CoV-2 and creatinine, a potential biomarker for COVID-19. For that, a simple, non-enzymatic electrochemical sensor, based on a Au-modified G-PLA platform was applied. The AuPs deposited on the electrode were involved in a complexation reaction with creatinine, resulting in a decrease in the analytical response, and thus providing a fast and simple electroanalytical device. Physicochemical characterizations were performed by SEM, EIS, FTIR, and cyclic voltammetry. Square wave voltammetry was employed for the creatinine detection, and the sensor presented a linear response with a detection limit of 0.016 mmol L-1. Finally, a biosensor for the detection of SARS-CoV-2 was developed based on the immobilization of a capture sequence of the viral cDNA upon the Au-modified 3D-printed electrode. The concentration, immobilization time, and hybridization time were evaluated in presence of the DNA target, resulting in a biosensor with rapid and low-cost analysis, capable of sensing the cDNA of the virus with a good limit of detection (0.30 µmol L-1), and high sensitivity (0.583 µA µmol-1 L). Reproducible results were obtained (RSD = 1.14%, n = 3), attesting to the potentiality of 3D-printed platforms for the production of biosensors.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , COVID-19/diagnóstico , Creatinina , DNA Complementar , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Humanos , Poliésteres , Impressão Tridimensional , SARS-CoV-2
20.
Talanta ; 250: 123727, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850056

RESUMO

Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 µmol L-1) with a limit of detection of 0.04 µmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.


Assuntos
Tratamento Farmacológico da COVID-19 , Hidroxicloroquina , Eletrodos , Humanos , Hidroxicloroquina/análise , Poliésteres , SARS-CoV-2 , Fuligem , Comprimidos/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA