Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(49): 54961-54968, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36469495

RESUMO

Controlling the magnetic ground states at the nanoscale is a long-standing basic research problem and an important issue in magnetic storage technologies. Here, we designed a nanostructured material that exhibits very unusual hysteresis loops due to a transition between vortex and double pole states. Arrays of 700 nm diamond-shaped nanodots consisting of Py(30 nm)/Ru(tRu)/Py(30 nm) (Py, permalloy (Ni80Fe20)) trilayers were fabricated by interference lithography and e-beam evaporation. We show that varying the Ru interlayer spacer thickness (tRu) governs the interaction between the Py layers. We found this interaction mainly mediated by two mechanisms: magnetostatic interaction that favors antiparallel (antiferromagnetic, AFM) alignment of the Py layers and exchange interaction that oscillates between ferromagnetic (FM) and AFM couplings. For a certain range of Ru thicknesses, FM coupling dominates and forms magnetic vortices in the upper and lower Py layers. For Ru thicknesses at which AFM coupling dominates, the magnetic state in remanence is a double pole structure. Our results showed that the interlayer exchange coupling interaction remains finite even at 4 nm Ru thickness. The magnetic states in remanence, observed by magnetic force microscopy (MFM), are in good agreement with corresponding hysteresis loops obtained by the magneto-optic Kerr effect (MOKE) and micromagnetic simulations.

2.
Sci Rep ; 11(1): 16617, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400750

RESUMO

Ratchet devices allow turning an ac input signal into a dc output signal. A ratchet device is set by moving particles driven by zero averages forces on asymmetric potentials. Hybrid nanostructures combining artificially fabricated spin ice nanomagnet arrays with superconducting films have been identified as a good choice to develop ratchet nanodevices. In the current device, the asymmetric potentials are provided by charged Néel walls located in the vertices of spin ice magnetic honeycomb array, whereas the role of moving particles is played by superconducting vortices. We have experimentally obtained ratchet effect for different spin ice I configurations and for vortex lattice moving parallel or perpendicular to magnetic easy axes. Remarkably, the ratchet magnitudes are similar in all the experimental runs; i. e. different spin ice I configurations and in both relevant directions of the vortex lattice motion. We have simulated the interplay between vortex motion directions and a single asymmetric potential. It turns out vortices interact with uneven asymmetric potentials, since they move with trajectories crossing charged Néel walls with different orientations. Moreover, we have found out the asymmetric pair potentials which generate the local ratchet effect. In this rocking ratchet the particles (vortices) on the move are interacting each other (vortex lattice); therefore, the ratchet local effect turns into a global macroscopic effect. In summary, this ratchet device benefits from interacting particles moving in robust and topological protected type I spin ice landscapes.

3.
Sci Rep ; 10(1): 10370, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587400

RESUMO

Little-Parks effect names the oscillations in the superconducting critical temperature as a function of the magnetic field. This effect is related to the geometry of the sample. In this work, we show that this effect can be enhanced and manipulated by the inclusion of magnetic nanostructures with perpendicular magnetization. These magnetic nanodots generate stray fields with enough strength to produce superconducting vortex-antivortex pairs. So that, the L-P effect deviation from the usual geometrical constrictions is due to the interplay between local magnetic stray fields and superconducting vortices. Moreover, we compare our results with a low-stray field sample (i.e. with the dots in magnetic vortex state) showing how the enhancement of the L-P effect can be explained by an increment of the effective size of the nanodots.

4.
Nanotechnology ; 30(24): 244003, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30790770

RESUMO

We have designed, fabricated and tested a robust superconducting ratchet device based on topologically frustrated spin ice nanomagnets. The device is made of a magnetic Co honeycomb array embedded in a superconducting Nb film. This device is based on three simple mechanisms: (i) the topology of the Co honeycomb array frustrates in-plane magnetic configurations in the array yielding a distribution of magnetic charges which can be ordered or disordered with in-plane magnetic fields, following spin ice rules; (ii) the local vertex magnetization, which consists of a magnetic half vortex with two charged magnetic Néel walls; (iii) the interaction between superconducting vortices and the asymmetric potentials provided by the Néel walls. The combination of these elements leads to a superconducting ratchet effect. Thus, superconducting vortices driven by alternating forces and moving on magnetic half vortices generate a unidirectional net vortex flow. This ratchet effect is independent of the distribution of magnetic charges in the array.

5.
RSC Adv ; 9(31): 17571-17580, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520560

RESUMO

The purpose of this work is to fabricate self-assembled microstructures by the sol-gel method and study the morphological, structural and compositional dependence of ε-Fe2O3 nanoparticles embedded in silica when glycerol (GLY) and cetyl-trimethylammonium bromide (CTAB) are added as steric agents simultaneously. The combined action of a polyalcohol and a surfactant significantly modifies the morphology of the sample giving rise to a different microstructure in each of the studied cases (1, 3 and 7 days of magnetic stirring time). This is due to the fact that the addition of these two compounds leads to a considerable increase in gelation time as GLY can interact with the alkoxide group on the surface of the iron oxide precursor micelle and/or be incorporated into the hydrophilic chains of CTAB. This last effect causes the iron oxide precursor micelles to be interconnected forming aggregates whose size and structure depend on the magnetic stirring time of the sol-gel synthetic route. In this paper, crystalline structure, composition, purity and morphology of the sol-gel coatings densified at 960 °C are examined. Emphasis is placed on the nominal percentage of the different iron oxides found in the samples and on the morphological and structural differences. This work implies the possibility of patterning ε-Fe2O3 nanoparticles in coatings and controlling their purity by an easy one-pot sol-gel method.

6.
J Phys Condens Matter ; 29(48): 485701, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29116941

RESUMO

The current study unveils the structural origin of the magnetic transition of the ε-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.

7.
Phys Chem Chem Phys ; 17(32): 20597-604, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26202423

RESUMO

Nanocomposites formed by porous silicon (PS) and zinc oxide (ZnO) have potential for applications in optoelectronic devices. However, understanding the distribution of both materials in the nanocomposite, and especially the fine structure of the synthesized ZnO crystals, is key for future device fabrication. This study focuses on the advanced characterization of a range of PS-ZnO nanocomposites by using photon- and ion-based techniques, such as X-ray absorption spectroscopy (XAS) and elastic backscattering spectroscopy (EBS), respectively. PS substrates formed by the electrochemical etching of p(+)-type Si are used as host material for the sol-gel nucleation of ZnO nanoparticles. Different properties are induced by annealing in air at temperatures ranging from 200 °C to 800 °C. Results show that wurtzite ZnO nanoparticles form only at temperatures above 200 °C, coexisting with Si quantum dots (QDs) inside a PS matrix. Increasing the annealing temperature leads to structural and distribution changes that affect the electronic and local structure of the samples changing their luminescence. Temperatures around 800 °C activate the formation of a new zinc silicate phase and transform PS into an amorphous silicon oxide (SiOx, x≈ 2) matrix with a noticeably reduced presence of Si QDs. Thus, these changes affect dramatically the emission from these nanocomposites and their potential applications.

8.
Acta Biomater ; 9(4): 6169-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23237987

RESUMO

Magnetic porous silicon flakes (MPSF) were obtained from mesoporous silicon layers formed by multi-step anodization and subsequent composite formation with Fe oxide nanoparticles by thermal annealing. The magnetic nanoparticles adhered to the surface and penetrated inside the pores. Their structure evolved as a result of the annealing treatments derived from X-ray diffraction and X-ray absorption analyses. Moreover, by tailoring the magnetic load, the dynamic and hydrodynamic properties of the particles were controlled, as observed by the pressure displayed against a sensor probe. Preliminary functionality experiments were performed using an eye model, seeking potential use of MPSF as reinforcement for restored detached retina. It was observed that optimal flake immobilization is obtained when the MPSF reach values of magnetic saturation >10(-4)Am(2)g(-1). Furthermore, the MPSF were demonstrated to be preliminarily biocompatible in vitro. Moreover, New Zealand rabbit in vivo models demonstrated their short-term histocompatibility and their magnetic functionality as retina pressure actuators.


Assuntos
Pressão Intraocular/fisiologia , Nanopartículas de Magnetita/química , Retina/fisiologia , Silício/química , Transdutores de Pressão , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação , Campos Magnéticos , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...