Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190463

RESUMO

Using the visibility graph algorithm (VGA), a complex network can be associated with a time series, such that the properties of the time series can be obtained by studying those of the network. Any value of the time series becomes a node of the network, and the number of other nodes that it is connected to can be quantified. The degree of connectivity of a node is positively correlated with its magnitude. The slope of the regression line is denoted by k-M, and, in this work, this parameter was calculated for the cardiac interbeat time series of different contrasting groups, namely: young vs. elderly; healthy subjects vs. patients with congestive heart failure (CHF); young subjects and adults at rest vs. exercising young subjects and adults; and, finally, sedentary young subjects and adults vs. active young subjects and adults. In addition, other network parameters, including the average degree and the average path length, of these time series networks were also analyzed. Significant differences were observed in the k-M parameter, average degree, and average path length for all analyzed groups. This methodology based on the analysis of the three mentioned parameters of complex networks has the advantage that such parameters are very easy to calculate, and it is useful to classify heartbeat time series of subjects with CHF vs. healthy subjects, and also for young vs. elderly subjects and sedentary vs. active subjects.

2.
Entropy (Basel) ; 25(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238528

RESUMO

With the spring-block model proposed by Olami, Feder, and Christensen (OFC), we obtained a time series of synthetic earthquakes with different values of the conservation level (ß), which measures the fraction of the energy that a relaxing block passes to its neighbors. The time series have multifractal characteristics, and we analyzed them with the Chhabra and Jensen method. We calculated the width, symmetry, and curvature parameters for each spectrum. As the value of conservation level increases, the spectra widen, the symmetric parameter increases, and the curvature around the maximum of the spectra decreases. In a long series of synthetic seismicity, we located earthquakes of the greatest magnitude and built overlapping windows before and after them. For the time series in each window, we performed multifractal analysis to obtain multifractal spectra. We also calculated the width, symmetry, and curvature around the maximum of the multifractal spectrum. We followed the evolution of these parameters before and after large earthquakes. We found that the multifractal spectra had greater widths, were less skewed to the left, and were very pointed around the maximum before rather than after large earthquakes. We studied and calculated the same parameters and found the same results in the analysis of the Southern California seismicity catalog. This suggests that there seems to be a process of preparation for a great earthquake and that its dynamics are different from the one that occurs after this mainshock based on the behavior of the parameters mentioned before.

3.
Entropy (Basel) ; 25(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238571

RESUMO

The Olami, Feder and Christensen (OFC) spring-block model has proven to be a powerful tool for analyzing and comparing synthetic and real earthquakes. This work proposes the possible reproduction of Utsu's law for earthquakes in the OFC model. Based on our previous works, several simulations characterizing real seismic regions were performed. We located the maximum earthquake in these regions and applied Utsu's formulae to identify a possible aftershock area and made comparisons between synthetic and real earthquakes. The research compares several equations to calculate the aftershock area and proposes a new one with the available data. Subsequently, the team performed new simulations and chose a mainshock to analyze the behavior of the surrounding events, so as to identify whether they could be catalogued as aftershocks and relate them to the aftershock area previously determined using the formula proposed. Additionally, the spatial location of those events was considered in order to classify them as aftershocks. Finally, we plot the epicenters of the mainshock, and the possible aftershocks comprised in the calculated area resembling the original work of Utsu. Having analyzed the results, it is likely to say that Utsu's law is reproducible using a spring-block model with a self-organized criticality (SOC) model.

4.
Entropy (Basel) ; 24(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35455099

RESUMO

The self-organized critical (SOC) spring-block models are accessible and powerful computational tools for the study of seismic subduction. This work aims to highlight some important findings through an integrative approach of several actual seismic properties, reproduced by using the Olami, Feder, and Christensen (OFC) SOC model and some variations of it. A few interesting updates are also included. These results encompass some properties of the power laws present in the model, such as the Gutenberg-Richter (GR) law, the correlation between the parameters a and b of the linear frequency-magnitude relationship, the stepped plots for cumulative seismicity, and the distribution of the recurrence times of large earthquakes. The spring-block model has been related to other relevant properties of seismic phenomena, such as the fractal distribution of fault sizes, and can be combined with the work of Aki, who established an interesting relationship between the fractal dimension and the b-value of the Gutenberg-Richter relationship. Also included is the work incorporating the idea of asperities, which allowed us to incorporate several inhomogeneous models in the spring-block automaton. Finally, the incorporation of a Ruff-Kanamori-type diagram for synthetic seismicity, which is in reasonable accordance with the original Ruff and Kanamori diagram for real seismicity, is discussed.

5.
Entropy (Basel) ; 22(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-33286640

RESUMO

In 1980, Ruff and Kanamori (RK) published an article on seismicity and the subduction zones where they reported that the largest characteristic earthquake (Mw) of a subduction zone is correlated with two geophysical quantities: the rate of convergence between the oceanic and continental plates (V) and the age of the corresponding subducting oceanic lithosphere (T). This proposal was synthetized by using an empirical graph (RK-diagram) that includes the variables Mw, V and T. We have recently published an article that reports that there are some common characteristics between real seismicity, sandpaper experiments and a critically self-organized spring-block model. In that paper, among several results we qualitatively recovered a RK-diagram type constructed with equivalent synthetic quantities corresponding to Mw, V and T. In the present paper, we improve that synthetic RK-diagram by means of a simple model relating the elastic ratio γ of a critically self-organized spring-block model with the age of a lithospheric downgoing plate. In addition, we extend the RK-diagram by including some large subduction earthquakes occurred after 1980. Similar behavior to the former RK-diagram is observed and its SOC synthetic counterpart is obtained.

6.
Front Physiol ; 11: 981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903750

RESUMO

The RR-interval time series or tachograms obtained from electrocardiograms have been widely studied since they reflect the cardiac variability, and this is an indicative of the health status of a person. The tachogram can be seen as a highly non-linear and complex time series, and therefore, should be analyzed with non-linear techniques. In this work, several entropy measures, Sample Entropy (SampEn), Approximate Entropy (ApEn), and Fuzzy Entropy (FuzzyEn) are used as a measure of heart rate variability (HRV). Tachograms belonging to thirty-nine subjects were obtained from a cardiac stress test consisting of a rest period followed by a period of moderate physical activity. Subjects are grouped according to their physical activity using the IPAQ sedentary and active questionnaire, we work with youth and middle-aged adults. The entropy measures for each group show that for the sedentary subjects the values are high at rest and decrease appreciably with moderate physical activity, This happens for both young and middle-aged adults. These results are highly reproducible. In the case of the subjects that exercise regularly, an increase in entropy is observed or they tend to retain the entropy value that they had at rest. It seems that there is a possible correlation between the physical condition of a person with the increase or decrease in entropy during moderate physical activity with respect to the entropy at rest. It was also observed that entropy during longer physical activity tests tends to decrease as fatigue accumulates, but this decrease is small compared to the change that occurs when going from rest to physical activity.

7.
Nanoscale Res Lett ; 14(1): 258, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363863

RESUMO

Currently, gold nanoparticles have found applications in engineering and medical sciences, taking advantage from their properties and characteristics. Surface plasmon resonance, for instance, is one of the main features for optical applications and other physical properties, like high density, that represents the key for cellular uptake. Among other applications, in the medical field, some diseases may be treated by using gene therapy, including monogenetic or polygenetic disorders and infections. Gene adding, suppression, or substitution is one of the many options for genetic manipulation. This work explores an alternative non-viral method for gene transfer by using gold nanoparticles functionalized with organic polymers; two routes of synthesis were used: one of them with sodium borohydride as reducing agent and the other one with chitosan oligosaccharide as reducing and stabilizing agent. Gold nanoparticles conjugated with chitosan, acylated chitosan and chitosan oligosaccharide, were used to evaluate transfection efficiency of plasmid DNA into cell culture (HEK-293). Physical and chemical properties of gold nanocomposites were characterized by using UV-Vis Spectroscopy, ξ-potential, and transmission electron microscopy. Furthermore, the interaction between gold nanoparticles and plasmid DNA was demonstrated by using agarose gel electrophoresis. Transfection tests were performed and evaluated by ß-galactosidase activity and green fluorescence protein expression. The percentage of transfection obtained with chitosan, acylated chitosan, and chitosan oligosaccharide were of 27%, 33%, and 60% respectively.

8.
Entropy (Basel) ; 21(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33267295

RESUMO

We calculate the multifractal spectra of heartbeat RR-interval time series (tachograms) of healthy subjects and patients with congestive heart failure (CHF). From these time series, we obtained new subseries of 6 h durations when healthy persons and patients were asleep and awake respectively. For each time series and subseries, we worked out the multifractal spectra with the Chhabra and Jensen method and found that their graphs have different shapes for CHF patients and healthy persons. We suggest to measure two parameters: the curvature around the maximum and the symmetry for all these multifractal spectra graphs, because these parameters were different for healthy and CHF subjects. Multifractal spectra of healthy subjects tend to be right skewed especially when the subjects are asleep and the curvature around the maximum is small compared with the curvature around the maximum of the CHF multifractal spectra; that is, the spectra of patients tend to be more pointed around the maximum. In CHF patients, we also have encountered differences in the curvature of the multifractal spectra depending on their respective New York Heart Association (NYHA) index.

9.
Entropy (Basel) ; 20(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33266685

RESUMO

By using earthquake catalogs, previous studies have reported evidence that some changes in the spatial and temporal organization of earthquake activity are observed before and after of a main shock. These previous studies have used different approaches for detecting clustering behavior and distance-events density in order to point out the asymmetric behavior of foreshocks and aftershocks. Here, we present a statistical analysis of the seismic activity related to the M w = 8.2 earthquake that occurred on 7 September 2017 in Mexico. First, we calculated the inter-event time and distance between successive events for the period 1 January 1998 until 20 October 2017 in a circular region centered at the epicenter of the M w = 8.2 EQ. Next, we introduced the concept of pseudo-velocity as the ratio between the inter-event distance and inter-event time. A sliding window is considered to estimate some statistical features of the pseudo-velocity sequence before the main shock. Specifically, we applied the multifractal method to detect changes in the spectrum of singularities for the period before the main event on 7 September. Our results point out that the multifractality associated with the pseudo-velocities exhibits noticeable changes in the characteristics of the spectra (more narrower) for approximately three years, from 2013 until 2016, which is preceded and followed by periods with wider spectra. On the other hand, we present an analysis of patterns of seismic quiescence before the M w = 8.2 earthquake based on the Schreider algorithm over a period of 27 years. We report the existence of an important period of seismic quietude, for six to seven years, from 2008 to 2015 approximately, known as the alpha stage, and a beta stage of resumption of seismic activity, with a duration of approximately three years until the occurrence of the great earthquake of magnitude M w = 8.2 . Our results are in general concordance with previous results reported for statistics based on magnitude temporal sequences.

10.
J Theor Biol ; 240(2): 209-17, 2006 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-16256143

RESUMO

Enzymatic kinetics adjust well to the Michaelis-Menten paradigm in homogeneous media with dilute, perfectly mixed reactants. These conditions are quite different from the highly structured cell plasm, so applications of the classic kinetics theory to this environment are rather limited. Cytoplasmic structure produces molecular crowding and anomalous diffusion of substances, modifying the mass action kinetic laws. The reaction coefficients are no longer constant but time-variant, as stated in the fractal kinetics theory. Fractal kinetics assumes that enzymatic reactions on such heterogeneous media occur within a non-Euclidian space characterized by a certain fractal dimension, this fractal dimension gives the dependence on time of the kinetic coefficients. In this work, stochastic simulations of enzymatic reactions under molecular crowding have been completed, and kinetic coefficients for the reactions, including the Michaelis-Menten parameter KM, were calculated. The simulations results led us to confirm the time dependence of michaelian kinetic parameter for the enzymatic catalysis. Besides, other chaos related phenomena were pointed out from the obtained KM time series, such as the emergence of strange attractors and multifractality.


Assuntos
Células/enzimologia , Simulação por Computador , Enzimas/metabolismo , Fractais , Modelos Químicos , Modelos Estatísticos , Animais , Catálise , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...