Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404885, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622059

RESUMO

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.

2.
Cancer Cell ; 41(7): 1242-1260.e6, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267953

RESUMO

The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.


Assuntos
Senescência Celular , Neoplasias Pulmonares , Idoso , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Senescência Celular/genética , Células Endoteliais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
3.
Mol Cancer Ther ; 22(5): 583-598, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752780

RESUMO

Triple-negative breast cancer (TNBC) is associated with an elevated risk of recurrence and poor prognosis. Historically, only chemotherapy was available as systemic treatment, but immunotherapy and targeted therapies currently offer prolonged benefits. TNBC is a group of diseases with heterogeneous treatment sensitivity, and resistance is inevitable and early for a large proportion of the intrinsic subtypes. Although senescence induction by anticancer therapy offers an immediate favorable clinical outcome once the rate of tumor progression reduces, these cells are commonly dysfunctional and metabolically active, culminating in treatment-resistant repopulation associated with worse prognosis. This heterogeneous response can also occur without therapeutic pressure in response to damage or oncogenic stress, playing a relevant role in the carcinogenesis. Remarkably, there is preclinical and exploratory clinical evidence to support a relevant role of senescence in treatment resistance. Therefore, targeting senescent cells has been a scientific effort in many malignant tumors using a variety of targets and strategies, including increasing proapoptotic and decreasing antiapoptotic stimuli. Despite promising results, there are some challenges to applying this technology, including the best schedule of combination, assessment of senescence, specific vulnerabilities, and the best clinical scenarios. This review provides an overview of senescence in TNBC with a focus on future-proofing senotherapy strategies.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Imunoterapia
5.
J Neuropathol Exp Neurol ; 81(8): 614-620, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763058

RESUMO

Aging is a major risk factor for cerebral infarction. Since cellular senescence is intrinsic to aging, we postulated that stroke-induced cellular senescence might contribute to neural dysfunction. Adult male Wistar rats underwent 60-minute middle cerebral artery occlusion and were grouped according to 3 reperfusion times: 24 hours, 3, and 7 days. The major biomarkers of senescence: 1) accumulation of the lysosomal pigment, lipofuscin; 2) expression of the cell cycle arrest markers p21, p53, and p16INK4a; and 3) expression of the senescence-associated secretory phenotype cytokines interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-1ß (IL-1ß) were investigated in brain samples. Lipofuscin accumulation was scarce at the initial stage of brain damage (24 hours), but progressively increased until it reached massive distribution at 7 days post-ischemia. Lipofuscin granules (aggresomes) were mainly confined to the infarcted areas, that is parietal cortex and adjacent caudate-putamen, which were equally affected. The expression of p21, p53, and p16INK4a, and that of IL-6, TNF-α, and IL-1ß, was significantly higher in the ischemic hemisphere than in the non-ischemic hemisphere. These data indicate that brain cell senescence develops during acute ischemic infarction and suggest that the acute treatment of ischemic stroke might be enhanced using senolytic drugs.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Senescência Celular , Infarto da Artéria Cerebral Média/metabolismo , Interleucina-6 , Lipofuscina/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53/metabolismo
6.
Nanoscale ; 14(17): 6656-6669, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438701

RESUMO

Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Histocompatibilidade , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Mech Ageing Dev ; 202: 111618, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990647

RESUMO

Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated ß-galactosidase (SA-ß-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.


Assuntos
Senescência Celular , Senoterapia , Biomarcadores/metabolismo , Lisossomos/metabolismo
8.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572983

RESUMO

Stress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. Dusp1 gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death. To better understand the link between inflammation and redox imbalance, we analyzed the cochlear transcriptome in Dusp1-/- mice. RNA sequencing analysis (GSE176114) indicated that Dusp1-/- cochleae can be defined by a distinct profile of key cellular expression programs, including genes of the inflammatory response and glutathione (GSH) metabolism. To dissociate the two components, we treated Dusp1-/- mice with N-acetylcysteine, and hearing was followed-up longitudinally by auditory brainstem response recordings. A combination of immunofluorescence, Western blotting, enzymatic activity, GSH levels measurements and RT-qPCR techniques were used. N-acetylcysteine treatment delayed the onset of SNHL and mitigated cochlear damage, with fewer TUNEL+ HC and lower numbers of spiral ganglion neurons with p-H2AX foci. N-acetylcysteine not only improved the redox balance in Dusp1-/- mice but also inhibited cytokine production and reduced macrophage recruitment. Our data point to a critical role for DUSP1 in controlling the cross-talk between oxidative stress and inflammation.

9.
Anal Chem ; 93(5): 3052-3060, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33502178

RESUMO

Cellular senescence is a state of stable cell cycle arrest that can negatively affect the regenerative capacities of tissues and can contribute to inflammation and the progression of various aging-related diseases. Advances in the in vivo detection of cellular senescence are still crucial to monitor the action of senolytic drugs and to assess the early onset or accumulation of senescent cells. Here, we describe a naphthalimide-styrene-based probe (HeckGal) for the detection of cellular senescence both in vitro and in vivo. HeckGal is hydrolyzed by the increased lysosomal ß-galactosidase activity of senescent cells, resulting in fluorescence emission. The probe was validated in vitro using normal human fibroblasts and various cancer cell lines undergoing senescence induced by different stress stimuli. Remarkably, HeckGal was also validated in vivo in an orthotopic breast cancer mouse model treated with senescence-inducing chemotherapy and in a renal fibrosis mouse model. In all cases, HeckGal allowed the unambiguous detection of senescence in vitro as well as in tissues and tumors in vivo. This work is expected to provide a potential technology for senescence detection in aged or damaged tissues.


Assuntos
Naftalimidas , Estireno , Animais , Senescência Celular , Fibroblastos , Camundongos , Fótons
10.
Mol Oncol ; 15(10): 2634-2671, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32981205

RESUMO

Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.


Assuntos
Senescência Celular , Neoplasias , Biomarcadores/metabolismo , Carcinogênese/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Fenótipo , Microambiente Tumoral
11.
FEBS J ; 288(1): 56-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961620

RESUMO

Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.


Assuntos
Envelhecimento/genética , Pontos de Checagem do Ciclo Celular/genética , Senescência Celular/genética , Heterocromatina/metabolismo , Mitocôndrias/genética , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Forma Celular/genética , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Dano ao DNA , Loci Gênicos , Heterocromatina/química , Humanos , Lamina Tipo B/deficiência , Lamina Tipo B/genética , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
12.
Aging Cell ; 19(4): e13142, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32233024

RESUMO

Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal ß-galactosidase (SA-ß-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-ß-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Plaquetas/efeitos dos fármacos , Galactose/farmacologia , Pró-Fármacos/farmacologia , Sulfonamidas/farmacologia , Compostos de Anilina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Galactose/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Sulfonamidas/química , Células Tumorais Cultivadas
13.
EMBO Mol Med ; 11(12): e10234, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31746100

RESUMO

Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Pesquisa Translacional Biomédica/métodos , Animais , Humanos
14.
Cell Rep ; 27(13): 3956-3971.e6, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242426

RESUMO

Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence.


Assuntos
Microambiente Celular , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Comunicação Parácrina , Proteínas de Ligação a RNA/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Masculino
15.
Mech Ageing Dev ; 177: 88-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490231

RESUMO

Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.


Assuntos
Senescência Celular/fisiologia , Células Epiteliais/metabolismo , Timo/metabolismo , Células Epiteliais/citologia , Humanos , Timo/citologia
16.
EMBO Mol Med ; 10(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30012580

RESUMO

Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal ß-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.


Assuntos
Senescência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Galactose/metabolismo , Lisossomos/enzimologia , Oligossacarídeos/metabolismo , beta-Galactosidase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/administração & dosagem , Citotoxinas/farmacologia , Modelos Animais de Doenças , Composição de Medicamentos , Corantes Fluorescentes/metabolismo , Xenoenxertos , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Coloração e Rotulagem
17.
Proc Natl Acad Sci U S A ; 115(8): 1801-1806, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432174

RESUMO

Cellular senescence is an important anticancer mechanism that restricts proliferation of damaged or premalignant cells. Cellular senescence also plays an important role in tissue remodeling during development. However, there is a trade-off associated with cellular senescence as senescent cells contribute to aging pathologies. The naked mole rat (NMR) (Heterocephalus glaber) is the longest-lived rodent that is resistant to a variety of age-related diseases. Remarkably, NMRs do not show aging phenotypes until very late stages of their lives. Here, we tested whether NMR cells undergo cellular senescence. We report that the NMR displays developmentally programmed cellular senescence in multiple tissues, including nail bed, skin dermis, hair follicle, and nasopharyngeal cavity. NMR cells also underwent cellular senescence when transfected with oncogenic Ras. In addition, cellular senescence was detected in NMR embryonic and skin fibroblasts subjected to γ-irradiation (IR). However, NMR cells required a higher dose of IR for induction of cellular senescence, and NMR fibroblasts were resistant to IR-induced apoptosis. Gene expression analyses of senescence-related changes demonstrated that, similar to mice, NMR cells up-regulated senescence-associated secretory phenotype genes but displayed more profound down-regulation of DNA metabolism, transcription, and translation than mouse cells. We conclude that the NMR displays the same types of cellular senescence found in a short-lived rodent.


Assuntos
Senescência Celular , Dano ao DNA , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/genética , Oncogenes , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Ratos-Toupeira/metabolismo , Ratos
18.
J Am Chem Soc ; 139(26): 8808-8811, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28625064

RESUMO

A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.


Assuntos
Corantes Fluorescentes/química , Naftalimidas/química , Neoplasias/tratamento farmacológico , Fótons , Animais , Senescência Celular/efeitos dos fármacos , Humanos , Camundongos , Padrões de Referência , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Aging Cell ; 16(1): 192-197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165661

RESUMO

Cellular senescence contributes to organismal development, aging, and diverse pathologies, yet available assays to detect senescent cells remain unsatisfactory. Here, we designed and synthesized a lipophilic, biotin-linked Sudan Black B (SBB) analogue suitable for sensitive and specific, antibody-enhanced detection of lipofuscin-containing senescent cells in any biological material. This new hybrid histo-/immunochemical method is easy to perform, reliable, and universally applicable to assess senescence in biomedicine, from cancer research to gerontology.


Assuntos
Bioensaio/métodos , Biomarcadores/análise , Senescência Celular , Animais , Biotina/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos
20.
Nucleic Acids Res ; 43(5): 2790-801, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25722367

RESUMO

Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130-190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.


Assuntos
Fagos Bacilares/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/metabolismo , Fagos Bacilares/genética , Sítios de Ligação/genética , Biocatálise , DNA Viral/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Cinética , Modelos Genéticos , Mutação , Ligação Proteica , Proteínas Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...