Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38653895

RESUMO

In this study, the feasibility of using hydrochars as anodic doping materials in microbial fuel cells (MFCs) was investigated. The feedstock used for hydrochar synthesis was metal-polluted plant biomass from an abandoned mining site. The hydrochar obtained was activated by pyrolysis at 500 °C in N2 atmosphere. Under steady state conditions, the current exerted by the MFCs, as well as the cyclic voltammetry and polarization curves, showed that the activated hydrochar-doped anodes exhibited the best performance in terms of power and current density generation, 0.055 mW/cm2 and 0.15 mA/cm2, respectively. These values were approximately 30% higher than those achieved with non-doped or doped with non-activated hydrochar anodes which can be explained by the highly graphitic carbonaceous structures obtained during the hydrochar activation that reduced the internal resistance of the system. These results suggest that the activated hydrochar materials could significantly enhance the electrochemical performance of bioelectrochemical systems. Moreover, this integration will not only enhance the energy generated by MFCs, but also valorize metal polluted plant biomass within the frame of the circular economy.

2.
Environ Res ; 238(Pt 2): 117183, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769830

RESUMO

This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Solo , Sulfetos
3.
Environ Sci Pollut Res Int ; 28(19): 23657-23666, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32948947

RESUMO

This work focuses on the development of electro-absorption and photoelectro-absorption technologies to treat gases produced by a synthetic waste containing the highly volatile perchloroethylene (PCE). To do this, a packed absorption column coupled with a UV lamp and an undivided electrooxidation cell was used. Firstly, it was confirmed that the absorption in a packed column is a viable method to achieve retention of PCE into an absorbent-electrolyte liquid. It was observed that PCE does not only absorb but it was also transformed into phosgene and other by-products. Later, it was confirmed that the electro-absorption process influenced the PCE degradation, favoring the transformation of phosgene into final products. Opposite to what is expected, carbon dioxide is not the main product obtained, but carbon tetrachloride and trichloroacetic acid. Both species are also hazardous but their higher solubility in water opens possibilities for a successful and more environmental-friendly removal. The coupling with UV-irradiation has a negative impact on the degradation of phosgene. Finally, a reaction mechanism was proposed for the degradation of PCE based on the experimental observations. Results were not as expected during the planning of the experimental work but it is important to take in mind that PCE decomposition occurs in wet conditions, regardless of the applied technology, and this work is a first approach to try to solve the treatment problems associated to PCE gaseous waste flows in a realistic way.


Assuntos
Tetracloroetileno , Tetracloreto de Carbono , Gases , Tetracloroetileno/análise , Raios Ultravioleta
4.
Chemosphere ; 225: 19-26, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30856471

RESUMO

A comparison between the performance of electrolysis of three different soil-washing wastes with platinum and boron doped diamond (BDD) anodes is carried out in this work. Results demonstrate that the treatment is more efficient with BDD for perchloroethylene and clopyralid but not for the case of lindane, because in this case there is a competitive oxidation between lindane and Sodium Dodecyl Sulfate used to extract this pollutant from soil. First order kinetics are observed in each compound with higher removal at the early stages and generally better results are obtained when using BDD as anode. The evolution of pH and a voltammetry study indicate a higher direct oxidation rate in the case of platinum and more importance of hydroxyl radical mediated processes with diamond anodes. Similar speciation is obtained during the electro-oxidation using BDD and platinum electrodes although the concentration of intermediates vary significantly.


Assuntos
Eletrólise/métodos , Poluentes do Solo/química , Poluentes Químicos da Água/química , Boro/química , Diamante/química , Eletrodos , Hexaclorocicloexano , Radical Hidroxila/química , Cinética , Oxirredução , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...