Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e114665, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916885

RESUMO

Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Inclusão em Parafina/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo
2.
Angew Chem Int Ed Engl ; 62(24): e202302883, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-36939315

RESUMO

Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments-often referred to as fucose migration-has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product.


Assuntos
Antígenos de Grupos Sanguíneos , Fucose , Fucose/química , Sequência de Carboidratos , Epitopos/química , Espectrometria de Massas , Polissacarídeos/química
3.
European J Org Chem ; 2022(15): e202200255, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35915640

RESUMO

Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the ß-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.

4.
J Phys Chem A ; 125(42): 9279-9287, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34652165

RESUMO

The proton-bound dimer of hydrogen sulfate and formate is an archetypal structure for ionic hydrogen-bonding complexes that contribute to biogenic aerosol nucleation. Of central importance for the structure and properties of this complex is the location of the bridging proton connecting the two conjugate base moieties. The potential energy surface for bridging proton translocation features two local minima, with the proton localized at either the formate or hydrogen sulfate moiety. However, electronic structure methods reveal a shallow potential energy surface governing proton translocation, with a barrier on the order of the zero-point energy. This shallow potential complicates structural assignment and necessitates a consideration of nuclear quantum effects. In this work, we probe the structure of this complex and its isotopologues, utilizing infrared (IR) action spectroscopy of ions captured in helium nanodroplets. The IR spectra indicate a structure in which a proton is shared between the hydrogen sulfate and formate moieties, HSO4-···H+···-OOCH. However, because of the nuclear quantum effects and vibrational anharmonicities associated with the shallow potential for proton translocation, the extent of proton displacement from the formate moiety remains unclear, requiring further experiments or more advanced theoretical treatments for additional insight.

5.
Nat Commun ; 12(1): 1201, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619275

RESUMO

Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications.


Assuntos
Temperatura Baixa , Glicolipídeos/química , Galactosilceramidas/química , Monossacarídeos/análise , Espectrofotometria Infravermelho , Esfingosina/química , Estereoisomerismo
6.
Phys Chem Chem Phys ; 22(33): 18400-18413, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32797142

RESUMO

Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.


Assuntos
DNA/química , Oligodesoxirribonucleotídeos/química , Temperatura Baixa , Hélio/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Termodinâmica
7.
Chemphyschem ; 21(17): 1905-1907, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32652759

RESUMO

It has been reported that fragments produced by glycosidic bond breakage in mass spectrometry-based experiments can retain a memory of their anomeric configuration, which has major implications for glycan sequencing. Herein, we use cryogenic vibrational spectroscopy and ion mobility-mass spectrometry to study the structure of B-type fragments of protected galactosides. Cationic fragments were generated from glycosyl donors carrying trichloroacetimidate or thioethyl leaving groups of different anomeric configuration. The obtained infrared signatures indicate that the investigated fragments exhibit an identical structure, which suggests that there is no anomeric memory in B-type ions of fully protected monosaccharides.

8.
Anal Chem ; 92(15): 10228-10232, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32658472

RESUMO

Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.

9.
Angew Chem Int Ed Engl ; 59(32): 13638-13642, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32291895

RESUMO

1-Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1-deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon-carbon double-bond (C=C) isomers and hydroxylation regioisomers. Here we demonstrate that cryogenic gas-phase infrared (IR) spectroscopy of ionized 1-deoxysphingolipids enables the identification and differentiation of isomers by their unique spectroscopic fingerprints. In particular, C=C bond positions and stereochemical configurations can be distinguished by specific interactions between the charged amine and the double bond. The results demonstrate the power of gas-phase IR spectroscopy to overcome the challenge of isomer resolution in conventional mass spectrometry and pave the way for deeper analysis of the lipidome.


Assuntos
Esfingolipídeos/análise , Isomerismo , Espectrofotometria Infravermelho , Esfingolipídeos/química
10.
Angew Chem Int Ed Engl ; 59(15): 6166-6171, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944510

RESUMO

The stereoselective formation of 1,2-cis-glycosidic bonds is challenging. However, 1,2-cis-selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short-lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α-selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium-type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2-cis-glycosidic bonds.

11.
Anal Bioanal Chem ; 412(3): 533-537, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853603

RESUMO

Glycosaminoglycans (GAGs) are a physio- and pharmacologically highly relevant class of complex saccharides, possessing a linear sequence and strongly acidic character. Their repetitive linear core makes them seem structurally simple at first glance, yet differences in sulfation and epimerization lead to an enormous structural diversity with only a few GAGs having been successfully characterized to date. Recent infrared action spectroscopic experiments on sulfated mono- and disaccharide ions show great promise. Here, we assess the potential of two types of gas-phase action spectroscopy approaches in the range from 1000 to 1800 cm-1 for the structural analysis of complex GAG oligosaccharides. Synthetic tetra- and pentasaccharides were chosen as model compounds for this benchmark study. Utilizing infrared multiple photon dissociation action spectroscopy at room temperature, diagnostic bands are largely unresolved. In contrast, cryogenic infrared action spectroscopy of ions trapped in helium nanodroplets yields resolved infrared spectra with diagnostic features for monosaccharide composition and sulfation pattern. The analysis of GAGs could therefore significantly benefit from expanding the conventional MS-based toolkit with gas-phase cryogenic IR spectroscopy. Graphical abstract.


Assuntos
Glicosaminoglicanos/química , Oligossacarídeos/química , Espectrofotometria Infravermelho/métodos , Animais , Temperatura Baixa , Hélio/química , Humanos , Íons/química , Isomerismo , Espectrofotometria Infravermelho/instrumentação , Sulfatos/análise
12.
Anal Bioanal Chem ; 411(19): 4637-4645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30826852

RESUMO

Fucose migration reactions represent a substantial challenge in the analysis of fucosylated glycan structures by mass spectrometry. In addition to the well-established observation of transposed fucose residues in glycan-dissociation product ions, recent experiments show that the rearrangement can also occur in intact glycan ions. These results suggest a low-energy barrier for migration of the fucose residue and broaden the relevance of fucose migration to include other types of mass spectrometry experiments, including ion mobility-mass spectrometry and ion spectroscopy. In this work, we utilize cold-ion infrared spectroscopy to provide further insight into glycan scrambling in intact glycan ions. Our results show that the mobility of the proton is a prerequisite for the migration reaction. For the prototypical fucosylated glycans Lewis x and blood group antigen H-2, the formation of adduct ions or the addition of functional groups with variable proton affinity yields significant differences in the infrared spectra. These changes correlate well with the promotion or inhibition of fucose migration through the presence or absence of a mobile proton.


Assuntos
Fucose/química , Compostos de Amônio/química , Corantes Fluorescentes/química , Fucosiltransferases/química , Humanos , Espectrometria de Massas/métodos , Prótons , Espectrofotometria Infravermelho
13.
J Am Chem Soc ; 141(14): 5815-5823, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883095

RESUMO

The high Lewis basicity and small ionic radius of fluoride promote the formation of strong ionic hydrogen bonds in the complexation of fluoride with protic molecules. Herein, we report that carbonic acid, a thermodynamically disfavored species that is challenging to investigate experimentally, forms a complex with fluoride in the gas phase. Intriguingly, this complex is highly stable and is observed in abundance upon nanoelectrospray ionization of an aqueous sodium fluoride solution in the presence of gas-phase carbon dioxide. We characterize the structure and properties of the carbonic acid-fluoride complex, F-(H2CO3), and its deuterated isotopologue, F-(D2CO3), by helium nanodroplet infrared action spectroscopy in the photon energy range of 390-2800 cm-1. The complex adopts a C2 v symmetry structure with the carbonic acid in a planar trans-trans conformation and both OH groups forming ionic hydrogen bonds with the fluoride. Substantial vibrational anharmonic effects are observed in the infrared spectra, most notably a strong blue shift of the symmetric hydrogen stretching fundamental relative to predictions from the harmonic approximation or vibrational second-order perturbation theory. Ab initio thermostated ring-polymer molecular dynamics simulations indicate that this blue shift originates from strong coupling between the hydrogen stretching and bending vibrations, resulting in an effective weakening of the OH···F- ionic hydrogen bonds.


Assuntos
Ácido Carbônico/química , Fluoretos/química , Hélio/química , Nanoestruturas/química , Espectrofotometria Infravermelho , Conformação Molecular , Simulação de Dinâmica Molecular , Estereoisomerismo
14.
Chem Sci ; 10(5): 1272-1284, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809341

RESUMO

Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.

15.
Nat Commun ; 9(1): 4767, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409966

RESUMO

The original version of this Article contained an error in Fig. 1, in which an oxygen atom was missing from the 'Acetoxonium type' structure. This has been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 4174, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301896

RESUMO

Glycosyl cations are the key intermediates during the glycosylation reaction that covalently links building blocks during the synthetic assembly of carbohydrates. The exact structure of these ions remained elusive due to their transient and short-lived nature. Structural insights into the intermediate would improve our understanding of the reaction mechanism of glycosidic bond formation. Here, we report an in-depth structural analysis of glycosyl cations using a combination of cold-ion infrared spectroscopy and first-principles theory. Participating C2 protective groups form indeed a covalent bond with the anomeric carbon that leads to C1-bridged acetoxonium-type structures. The resulting bicyclic structure strongly distorts the ring, which leads to a unique conformation for each individual monosaccharide. This gain in mechanistic understanding fundamentally impacts glycosynthesis and will allow to tailor building blocks and reaction conditions in the future.

17.
Angew Chem Int Ed Engl ; 57(33): 10615-10619, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29923287

RESUMO

The proton-bound dicarboxylate motif, RCOO- ⋅H+ ⋅- OOCR, is a prevalent chemical configuration found in many condensed-phase systems. The proton-bound formate dimer HCOO- ⋅H+ ⋅- OOCH was studied utilizing cold-ion IR action spectroscopy in the range 400-1800 cm-1 . The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar-ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm-1 . Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking -COO- framework, an effect that is in line with the expected change in -C=O bond rehybridization upon protonation.

18.
Angew Chem Int Ed Engl ; 57(25): 7440-7443, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29688603

RESUMO

Fucose is an essential deoxysugar that is found in a wide range of biologically relevant glycans and glycoconjugates. A recurring problem in mass spectrometric analyses of fucosylated glycans is the intramolecular migration of fucose units, which can lead to erroneous sequence assignments. This migration reaction is typically assigned to activation during collision-induced dissociation (CID) in tandem mass spectrometry (MS). In this work, we utilized cold-ion spectroscopy and show for the first time that fucose migration is not limited to fragments obtained in tandem MS and can also be observed in intact glycan ions. This observation suggests a possible low-energy barrier for this transfer reaction and generalizes fucose migration to an issue that may universally occur in any type of mass spectrometry experiment.

19.
J Phys Chem Lett ; 9(9): 2305-2310, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29669208

RESUMO

Fluoroformate, also known as carbonofluoridate, is an intriguing molecule readily formed by the reductive derivatization of carbon dioxide. In spite of its well-known stability, a detailed structural characterization of the isolated anion has yet to be reported. Presented in this work is the vibrational spectrum of fluoroformate obtained by infrared action spectroscopy of ions trapped in helium nanodroplets, the first application of this technique to a molecular anion. The experimental method yields narrow spectral lines, providing experimental constraints on the structure that can be accurately reproduced using high-level ab initio methods. In addition, two notable Fermi resonances between a fundamental and combination band are observed. The electrostatic potential map of fluoroformate reveals substantial charge density on fluorine as well as on the oxygen atoms, suggesting multiple sites for interaction with hydrogen bond donors and electrophiles, which may in turn lead to intriguing solvation structures and reaction pathways.

20.
Angew Chem Int Ed Engl ; 56(37): 11248-11251, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28513924

RESUMO

The diversity of stereochemical isomers present in glycans and glycoconjugates poses a formidable challenge for comprehensive structural analysis. Typically, sophisticated mass spectrometry (MS)-based techniques are used in combination with chromatography or ion-mobility separation. However, coexisting structurally similar isomers often render an unambiguous identification impossible. Other powerful techniques such as gas-phase infrared (IR) spectroscopy have been limited to smaller glycans, since conformational flexibility and thermal activation during the measurement result in poor spectral resolution. This limitation can be overcome by using cold-ion spectroscopy. The vibrational fingerprints of cold oligosaccharide ions exhibit a wealth of well-resolved absorption features that are diagnostic for minute structural variations. The unprecedented resolution of cold-ion spectroscopy coupled with tandem MS may render this the key technology to unravel complex glycomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...