Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Nanomedicine ; 19: 2889-2915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525012

RESUMO

Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.


Assuntos
Infecções por Coronavirus , Viroses , Humanos , Antivirais/uso terapêutico , Preparações Farmacêuticas/química , Viroses/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos
2.
Antioxidants (Basel) ; 13(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397805

RESUMO

Cancer is the second-highest mortality rate disease worldwide, and it has been estimated that cancer will increase by up to 20 million cases yearly by 2030. There are various options of treatment for cancer, including surgery, radiotherapy, and chemotherapy. All of these options have damaging adverse effects that can reduce the patient's quality of life. Cancer itself arises from a series of mutations in normal cells that generate the ability to divide uncontrollably. This cell mutation can happen as a result of DNA damage induced by the high concentration of ROS in normal cells. High levels of reactive oxygen species (ROS) can cause oxidative stress, which can initiate cancer cell proliferation. On the other hand, the cytotoxic effect from elevated ROS levels can be utilized as anticancer therapy. Some bioactive compounds from natural foods such as fruit, vegetables, herbs, honey, and many more have been identified as a promising source of natural antioxidants that can prevent oxidative stress by regulating the level of ROS in the body. In this review, we have highlighted and discussed the benefits of various natural antioxidant compounds from natural foods that can regulate reactive oxygen species through various pathways.

3.
Polymers (Basel) ; 16(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276694

RESUMO

BACKGROUND: The current challenge in drug development lies in addressing the physicochemical issues that lead to low drug effectiveness. Solubility, a crucial physicochemical parameter, greatly influences various biopharmaceutical aspects of a drug, including dissolution rate, absorption, and bioavailability. Amorphous solid dispersion (ASD) has emerged as a widely explored approach to enhance drug solubility. OBJECTIVE: The objective of this review is to discuss and summarize the development of polyvinylpyrrolidone (PVP)-based amorphous solid dispersion in improving the physicochemical properties of drugs, with a focus on the use of PVP as a novel approach. METHODOLOGY: This review was conducted by examining relevant journals obtained from databases such as Scopus, PubMed, and Google Scholar, since 2018. The inclusion and exclusion criteria were applied to select suitable articles. RESULTS: This study demonstrated the versatility and efficacy of PVP in enhancing the solubility and bioavailability of poorly soluble drugs. Diverse preparation methods, including solvent evaporation, melt quenching, electrospinning, coprecipitation, and ball milling are discussed for the production of ASDs with tailored characteristics. CONCLUSION: PVP-based ASDs could offer significant advantages in the formulation strategies, stability, and performance of poorly soluble drugs to enhance their overall bioavailability. The diverse methodologies and findings presented in this review will pave the way for further advancements in the development of effective and tailored amorphous solid dispersions.

4.
J Biomol Struct Dyn ; 42(6): 3223-3232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37286382

RESUMO

α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including ß-cyclodextrin and 2-hydroxypropyl-ß-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to ß-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-ß-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.


Assuntos
Ciclodextrinas , Xantonas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Solubilidade , Simulação de Acoplamento Molecular , beta-Ciclodextrinas/química , Ciclodextrinas/química , Água/química
5.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005306

RESUMO

α-mangostin (AM) is a promising natural anticancer agent that can be used in cancer research. However, its effectiveness can be limited by poor solubility and bioavailability. To address this issue, chitosan-based nanoparticles (CSNPs) have been investigated as a potential delivery system to enhance the cytotoxicity to cancer cells and improve selectivity against normal cells. In this study, we developed folate-conjugated chitosan nanoparticles (F-CS-NPs) using a carbodiimide-based conjugation method to attach folate to chitosan (CS), which have different molecular weights. The NPs were crosslinked using tripolyphosphate (TPP) via ionic gelation. To characterize the F-CS-NPs, we utilized various analytical techniques, including transmission electron microscopy (TEM) to evaluate the particle size and morphology, Fourier-transform infrared spectroscopy (FTIR) to confirm the presence of functional groups, and ultraviolet-visible spectroscopy (UV-Vis) to measure the absorption spectrum and confirm the presence of folate. The particle size of AM-F-CS-NPs ranged from 180 nm to 250 nm, with many having favorable charges ranging from +40.33 ± 3.4 to 10.69 ± 1.3 mV. All NPs exhibited the same spherical morphology. The use of F-CS-NPs increased drug release, followed by a sustained release pattern. We evaluated the cytotoxicity of AM, AM-F-CS-HMW, and AM-F-CS-LMW NPs against MCF-7 cells and found IC50 values of 8.47 ± 0.49, 5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively. These results confirm the improved cytotoxicity of AM in MCF-7 cells when delivered via F-CS-NPs. Overall, our in vitro study demonstrated that the properties of F-CS-NPs greatly influence the cytotoxicity of AM in MCF-7 breast cancer cells (significantly different (p < 0.05)). The use of F-CS-NPs as a drug-delivery system for AM may have the potential to develop novel therapies for breast cancer.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Células MCF-7 , Ácido Fólico , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
6.
J Biomol Struct Dyn ; : 1-10, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776010

RESUMO

High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.

7.
Polymers (Basel) ; 15(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765512

RESUMO

α-mangostin (Amg), a compound isolated from the mangosteen rind (Garcinia mangostana, L.), has demonstrated promising anticancer activity. However, its low solubility and selectivity against cancer cells limit its efficacy. To address this issue, researchers have developed chitosan/alginate polymeric nanoparticles (NANO-AMCAL) to enhance the effectiveness of Amg. In vitro studies have demonstrated that NANO-AMCAL is highly active against breast cancer cells. Therefore, an in vivo study was conducted to evaluate the efficacy of NANO-AMCAL in treating breast cancer in Wistar rats (Rattus norvegicus) and determine the effective dose. The rats were divided into seven treatment groups, including positive control, negative control, pure Amg, and NANO-AMCAL 5 mg, 10 mg, and 20 mg. The rats were injected subcutaneously with a carcinogenic agent, 7,12-dimethylbenz(a)anthracene (DMBA) and were evaluated for weight and tumor volume every three days during treatment. Surgery was performed on day 14, and histopathological studies were carried out on breast and lung cancer tissues. The results showed that NANO-AMCAL significantly enhanced the anticancer activity of Amg in treating breast cancer in Wistar rats. NANO-AMCAL containing 0.33 mg of Amg had a healing effect three times better than 20 mg pure Amg and was comparable to tamoxifen. The effective dose of NANO-AMCAL for anti-breast cancer treatment in Wistar rats was found to be 20 mg, which exhibited a good healing response, and the tumor volume continued to decrease up to 17.43% on the 14th day. Furthermore, histopathological tests showed tissue repair and no metastases. These findings suggest that NANO-AMCAL may be a promising therapeutic option for breast cancer treatment.

8.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570633

RESUMO

Black betel leaf from East Kalimantan contains various secondary metabolites such as alkaloid saponins, flavonoids, and tannins. A compound, piperenamide A, which has antimicrobial activity, is also found in black betel leaf. This study aims to identify and authenticate the compound piperenamide A found in black betel leaf extract in other types of betel plant using HPLC and FTIR-chemometrics. The extraction method used was maceration with 70% ethanol solvent. Determination of piperenamide A content in black betel leaf extract was via HPLC column C18, with a maximum wavelength of 259 nm and a mobile phase of water:acetonitrile at a flow rate of 1 mL/minute. From the results, piperenamide A was only found in black betel (Piper acre) and not in Piper betel and Piper crocatum. Piperenamide A levels obtained were 4.03, 6.84, 5.35, 13.85, and 2.15%, respectively, in the samples studied. The combination of FTIR spectra with chemometric methods such as PCA and PLS-DA was used to distinguish the three types of betel. Discriminant analysis can classify black betel (Piper acre), Piper betel, and Piper crocatum according to its type. These methods can be used for identification and authentication of black betel.


Assuntos
Anti-Infecciosos , Piper , Piper/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Quimiometria , Análise de Fourier , Controle de Qualidade , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514423

RESUMO

Improving drug solubility is necessary for formulations of poorly water-soluble drugs, especially for oral administration. Amorphous solid dispersions (ASDs) are widely used in the pharmaceutical industry to improve the physical stability and solubility of drugs. Therefore, this study aims to characterize interaction between a drug and polymer in ASD, as well as evaluate the impact on the physical stability and dissolution of alpha-mangostin (AM). AM was used as a model of a poorly water-soluble drug, while polyvinylpyrrolidone (PVP) and eudragit were used as polymers. The amorphization of AM-eudragit and AM-PVP was confirmed as having a halo pattern with powder X-ray diffraction measurements and the absence of an AM melting peak in the differential scanning calorimetry (DSC) curve. The solubility of amorphous AM increased in the presence of either eudragit or PVP due to amorphization and interactions of AM-polymer. Furthermore, FT-IR spectroscopy and in silico studies revealed hydrogen bond interactions between the carbonyl group of AM and the proton of eudragit as well as PVP. AM-eudragit with a ratio of 1:1 recrystallized after 7 days of storage at 25 °C and 90% RH, while the AM-PVP 1:4 and 1:10 samples retained the X-ray halo patterns, even under humid conditions. In a dissolution test, the presence of polymer in ASD significantly improved the dissolution profile due to the intermolecular interaction of AM-polymer. AM-eudragit 1:4 maintained AM supersaturation for a longer time compared to the 1:1 sample. However, a high supersaturation was not achieved in AM-PVP 1:10 due to the formation of large agglomerations, leading to a slow dissolution rate. Based on the results, interaction of AM-polymer in ASD can significantly improve the pharmaceutical properties of AM including the physical stability and dissolution.

10.
Foods ; 12(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509903

RESUMO

This study aims to provide an overview of the compounds found in sweet potato (Ipomoea batatas) that contribute to its anti-diabetic activity and the mechanisms by which they act. A comprehensive literature search was conducted using electronic databases, such as PubMed, Scopus, and Science Direct, with specific search terms and Boolean operators. A total of 269 articles were initially retrieved, but after applying inclusion and exclusion criteria only 28 articles were selected for further review. Among the findings, four varieties of sweet potato were identified as having potential anti-diabetic properties. Phenolic acids, flavonols, flavanones, and anthocyanidins are responsible for the anti-diabetic activity of sweet potatoes. The anti-diabetic mechanism of sweet potatoes was determined using a combination of components with multi-target actions. The results of these studies provide evidence that Ipomoea batatas is effective in the treatment of type 2 diabetes.

11.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298745

RESUMO

This research serves as the basis for developing essential oil-based repellent activity tests against Aedes aegypti mosquitoes. The method used for the isolation of essential oils was the steam distillation method. Virus-free Aedes aegypti mosquitoes were used as test animals by applying the 10% essential oil repellent on the arms of volunteers. The analysis of the essential oils activities and aromas' components was carried out using headspace repellent and GC-MS methods. Based on the results, the yields of essential oil from 5000 g samples for cinnamon bark, clove flowers, patchouli, nutmeg seed, lemongrass, citronella grass, and turmeric rhizome were 1.9%, 16%, 2.2%, 16.8%, 0.9%, 1.4%, and 6.8%, respectively. The activity test showed that the average repellent power of 10% essential oils, patchouli, cinnamon, nutmeg, turmeric, clove flowers, citronella grass, and lemongrass, was 95.2%, 83.8%, 71.4%, 94.7%, 71.4%, 80.4%, and 85%, respectively. Patchouli and cinnamon had the best average repellent power. Meanwhile, the aroma activities showed that the average repellent power of the patchouli oil was 96%, and the cinnamon oil was 94%. From the GC-MS analysis, nine components were identified in the patchouli essential oil aromas' with the highest concentration being patchouli alcohol (42.7%), Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-, [1S-(1α,7α,8aß)] (10.8%), α-guaiene (9.22%), and seychellene (8.19%)., whereas using the GC-MS headspace repellent method showed that there were seven components identified in the patchouli essential oil aroma with a high concentration of the components, which were patchouli alcohol (52.5%), Seychellene (5.2%), and α-guaiene (5.2%). The analysis results of cinnamon essential oil using the GC-MS method showed that there were five components identified in the aroma, with E-cinnamaldehyde (73%) being the highest component, whereas using the GC-MS headspace repellent method showed that there were five components identified in the aroma, with highest concentrations of cinnamaldehyde (86.1%). It can be concluded that the chemical compounds contained in patchouli and cinnamon bark have the potential to be environmentally friendly repellents in controlling and preventing Aedes aegypti mosquitoes.


Assuntos
Aedes , Repelentes de Insetos , Óleos Voláteis , Animais , Óleos Voláteis/química , Repelentes de Insetos/química
12.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175172

RESUMO

Asiatic acid, a triterpenoid compound, has been shown to have anti-inflammatory activity through the inhibition of the formation of cyclooxygenase-2 (COX-2) in vitro and in vivo. This study was conducted to determine the binding stability and the inhibitory potential of asiatic acid as an anti-inflammatory candidate. The study involved in vitro testing utilizing a colorimetric kit as well as in silico testing for the pharmacophore modeling and molecular dynamic (MD) simulation of asiatic acid against COX-2 (PDB ID: 3NT1). The MD simulations showed a stable binding of asiatic acid to COX-2 and an RMSD range of 1-1.5 Å with fluctuations at the residues of Phe41, Leu42, Ile45, Arg44, Asp367, Val550, Glu366, His246, and Gly227. The total binding energy of the asiatic acid-COX-2 complex is -7.371 kcal/mol. The anti-inflammatory activity of the asiatic acid inhibition of COX-2 was detected at IC50 values of 120.17 µM. Based on pharmacophore modeling, we discovered that carboxylate and hydroxyl are the two main functional groups that act as hydrogen bond donors and acceptors interacting with the COX-2 enzyme. From the results, it is evident that asiatic acid is a potential anti-inflammatory candidate with high inhibitory activity in relation to the COX-2 enzyme.


Assuntos
Anti-Inflamatórios , Simulação de Dinâmica Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Triterpenos Pentacíclicos/farmacologia , Simulação de Acoplamento Molecular
13.
J Adv Pharm Technol Res ; 14(2): 105-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255880

RESUMO

ß-estradiol is an estrogen steroid hormone and acts as an estrogen receptor agonist. Radiolabeled ß-estradiol is widely used as a radioligand for binding assays. In this present study, the synthesis of [131I]ß-estradiol has been successfully carried out. Accordingly, the measurement of the radiochemical purity (RCP) value and the presence of chemical impurities are needed. To validate the method for identifying the RCP and chemical impurities from [131I]ß-estradiol using high-performance liquid chromatography (HPLC). The synthesis of [131I]ß-estradiol was accomplished by a radioiodination reaction, and the RCP was determined by radio-HPLC. The method for ß-estradiol measurement was validated by reversed-phase HPLC radio-analytical employing ultraviolet-visible (UV-Vis) and radioactive detector. The method for radio-HPLC analysis was validated and established using a C-18 column and MeCN: H2O (55:45 v/v) as the mobile phase. The following conditions were applied: a flow rate of 1.2 mL/min, isocratic, and a UV-Vis detector at 280 nm. The RCP of [131I]ß-estradiol measured by thin-layer chromatography and radio-HPLC was 99.27% ± 1.25% and 95.75% ± 2.41%, respectively. The validation parameters were appropriate and met the requirements for acceptance. HPLC analysis was able to identify the presence of unlabeled estradiol (24.51%-27.29%) in the mixture of [131I]ß-estradiol. As a result, purification using preparative HPLC or other methods will be required in future studies.

14.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240025

RESUMO

The high rate of incidence and mortality caused by breast cancer encourage urgent research to immediately develop new diagnostic and therapeutic agents for breast cancer. Alpha mangostin (AM) is a natural compound reported to have anti-breast cancer properties. Its electron-donating groups structure allows it to be labeled with an iodine-131 radioisotope to develop a candidate of a diagnostic and therapeutic agent for breast cancer. This study aims to prepare the [131I]Iodine-α-mangostin ([131I]I-AM) and evaluate its stability, lipophilicity, and cellular uptake in breast cancer cell lines. The [131I]I-AM was prepared by direct radiosynthesis with Chloramine-T method in two conditions (A: AM dissolved in NaOH, B: AM dissolved in ethanol). Reaction time, pH, and mass of the oxidizing agent were optimized as crucial parameters that affected the radiosynthesis reaction. Further analysis was conducted using the radiosynthesis conditions with the highest radiochemical purity (RCP). Stability tests were carried out at three storage conditions, including -20, 2, and 25 °C. A cellular uptake study was performed in T47D (breast cancer cell line) and Vero cells (noncancerous cell line) at various incubation times. The results show that the RCP values of [131I]I-AM under conditions A and B were 90.63 ± 0.44 and 95.17 ± 0.80% (n = 3), respectively. In the stability test, [131I]I-AM has an RCP above 90% after three days of storage at -20 °C. A significant difference was obtained between [131I]I-AM uptake in T47D and Vero cells. Based on these results, [131I]I-AM has been prepared with high RCP, stable at -20 °C, and specifically uptaken by breast cancer cell lines. Biodistribution evaluations in animals are recommended as further research in developing [131I]I-AM as a diagnostic and therapeutic agent for breast cancer.


Assuntos
Iodo , Neoplasias , Animais , Chlorocebus aethiops , Radioisótopos do Iodo/química , Distribuição Tecidual , Células Vero , Linhagem Celular Tumoral
15.
Heliyon ; 9(5): e16045, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215800

RESUMO

Alpha mangostin (AM), the main xanthone derivative contained in mangosteen pericarp (Garcinia mangostana/GM), has many pharmacological activities such as antioxidant, antiproliferation, antiinflammatory, and anticancer. Several general toxicity studies of AM have been previously reported to assess the safety profile of AM. Toxicity studies were carried out by various methods such as on test animals, interventions, and various routes of administration, but the test results have not been well documented. Our study aimed to systematically summarizes research on the safety profile of GM containing AM through general toxicity tests to get the LD50 and NOAEL values, and so, can be used as a database related to AM toxicity profiles. This could facilitate other researchers in determining further development of GM-or-AM-based products. Pubmed, Google scholar, ScienceDirect, and EBSCO were chosen to collect the articles while ARRIVE 2.0 was used to evaluate the quality and risk-of-bias of the in vivo toxicity studies included in this systematic review. A total of 20 articles met the eligibility criteria and were reviewed to predict the LD50 and NOAEL of AM. The results showed that the LD50 of AM is between >15.480 mg/kgBW to ≤6000 mg/kgBW while the NOAEL value is between <100 and ≤2000 mg/kgBW.

16.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986740

RESUMO

Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.

17.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850308

RESUMO

Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.

18.
J Biomol Struct Dyn ; 41(10): 4515-4521, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35465844

RESUMO

Triple-negative breast cancer (TNBC) is a breast cancer subtype that does not express the estrogen receptor, the progesterone receptor, or the human epidermal growth factor receptor 2 and that is characterized by high invasiveness, high metastatic potential, and poor prognosis. TNBC lacks receptors and hence cannot be treated by using targeted therapies; as such, the therapeutic potential of Indonesian herbal plants against this disease is worth exploring. Herein, we explore the molecular docking and the molecular dynamics simulations of α-mangostin on glycogen synthase kinase 3ß (GSK3ß; PDB ID: 4ACC). Our findings reveal that α-mangostin has a weaker binding affinity to GSK3ß than the native ligand (-8.22 kcal/mol), while the latter binds to GSK3ß with a stronger binding affinity of -8.92 kcal/mol. According to the binding site analysis, the hydrogen bonds of the native ligand on Asp133 and Arg141, while α-mangostin only appeared to form a hydrogen bond on the enzyme's Asp133. On the other hand, α-mangostin shares similar docking sites with the native ligand (namely, Ile62, Phe67, Val70, and Thr138), thus leading to the conclusion that the native ligand and α-mangostin might share a similar molecular mechanism. The molecular dynamics simulation by using the molecular mechanics Poisson-Boltzmann and surface area (MM-PBSA) calculations' method shows that α-mangostin maintains a better affinity (with a value of ΔGTotal at -114.463 kJ/mol) as compared with the native ligand (with a respective ΔGTotal value of -75.158 kJ/mol). Our findings are suggestive of α-mangostin possessing a valuable potential as an anti-TNBC agent through GSK3ß inhibition.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ligantes , Glicogênio Sintase Quinase 3 beta , Simulação de Dinâmica Molecular
19.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202734

RESUMO

The characteristics of sago starch exhibit remarkable resemblances to those of cassava, potato, and maize starches. This review intends to discuss and summarize the synthesis and characterization of sodium starch glycolate (SSG) from sago starch as a superdisintegrant from published journals using keywords in PubMed, Scopus, and ScienceDirect databases by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020). There are many methods for synthesizing sodium starch glycolate (SSG). Other methods may include the aqueous, extrusion, organic solvent slurry, and dry methods. Sago starch is a novel form of high-yield starch with significant development potential. After cross-linking, the phosphorus content of sago starch increases by approximately 0.3 mg/g, corresponding to approximately one phosphate ester group per 500 anhydroglucose units. The degree of substitution (DS) of sodium starch glycolate (SSG) from sago ranges from 0.25 to 0.30; in drug formulations, sodium starch glycolate (SSG) from sago ranges from 2% to 8% w/w. Higher levels of sodium starch glycolate (SSG) (2% and 4% w/w) resulted in shorter disintegration times (within 1 min). Sago starch is more swellable and less enzymatically digestible than pea and corn starch. These investigations demonstrate that sago starch is a novel form of high-yield starch with tremendous potential for novel development as superdisintegrant tablets and capsules.


Assuntos
Arecaceae , Amido , Bases de Dados Factuais , Grão Comestível
20.
J Adv Pharm Technol Res ; 13(4): 322-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568052

RESUMO

Hydrazine is an alkaline reduction compound which is widely used in synthesis. Based on the structure-activity analysis, to elicit antitumor activity, the presence of the N-methyl group is an absolute requirement. The aim of the research is to synthesize a new hydrazine derivate compound that has potency as a novel anti-breast cancer. 4-hydrazinylphenyl benzenesulfonate was synthesized employing reduction and diazotization methods. Structure characterization was carried out using Fourier transform infrared (FTIR), C13-nuclear magnetic resonance (NMR), H1-NMR, and High Resolution Time-of-Flight Mass Spectrometry (HR-TOF-MS). The anti-cancer activity of this compound against breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line was determined using a PrestoBlue viability assay. The new of hydrazine derivative, 4-hydrazinylphenyl benzenesulfonate, has been successfully synthesized. The reduction and diazotization methods have been successfully used in the synthesis of new compound of hydrazine derivatives. Structure characterization of 4-hydrazinylphenyl benzenesulfonate was established using FTIR, C13-NMR, H1-NMR, and HR-TOF-MS. The anti-cancer activity of this compound against breast cancer MCF-7 cell line was determined using a PrestoBlue viability assay with IC50 0.00246 µg/mL or 9.32 nM. In conclusion, 4-hydrazinylphenyl benzenesulfonate was successfully synthesized as a new candidate for anti-breast cancer compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...