Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(33): 18093-18101, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397049

RESUMO

Enhancement of the σ-hole on the halogen atom of aryl halides due to perfluorination of the ring is demonstrated by use of the Extended Townes-Dailey (ETD) model coupled to a Natural Atomic Orbital Bond analysis on two perfluorinated aryl halides (C6F5Cl and C6F5Br) and their hydrogenated counterparts. The ETD analysis, which quantifies the halogen p-orbitals populations, relies on the nuclear quadrupole coupling constants which in this work are accurately determined experimentally from the rotational spectra. The rotational spectra investigated by Fourier-transform microwave spectroscopy performed in supersonic expansion are reported for the parent species of C6F5Cl and C6F5Br and their 13C, 37Cl or 81Br substituted isotopologues observed in natural abundance. The experimentally determined rotational constants combined with theoretical data at the MP2/aug-cc-pVTZ level provide precise structural information from which an elongation of the ring along its symmetry axis due to perfluorination is proved.

2.
Angew Chem Int Ed Engl ; 59(1): 192-196, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652384

RESUMO

We designed and demonstrated the unique abilities of the first gas chromatography-molecular rotational resonance spectrometer (GC-MRR). While broadly and routinely applicable, its capabilities can exceed those of high-resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas-phase separations. GC-MRR is shown to be ideal for compound-specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC-MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.

3.
Science ; 336(6083): 897-901, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22605772

RESUMO

Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

4.
J Chem Phys ; 135(15): 154304, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22029310

RESUMO

Microwave spectra of the propiolic acid-formic acid doubly hydrogen bonded complex were measured in the 1 GHz to 21 GHz range using four different Fourier transform spectrometers. Rotational spectra for seven isotopologues were obtained. For the parent isotopologue, a total of 138 a-dipole transitions and 28 b-dipole transitions were measured for which the a-dipole transitions exhibited splittings of a few MHz into pairs of lines and the b-type dipole transitions were split by ~580 MHz. The transitions assigned to this complex were fit to obtain rotational and distortion constants for both tunneling levels: A(0+) = 6005.289(8), B(0+) = 930.553(8), C(0+) = 803.9948(6) MHz, Δ(0+)(J) = 0.075(1), Δ(0+)(JK) = 0.71(1), and δ(0+)(j) = -0.010(1) kHz and A(0-) = 6005.275(8), B(0-) = 930.546(8), C(0-) = 803.9907(5) MHz, Δ(0-)(J) = 0.076(1), Δ(0-)(JK) = 0.70(2), and δ(0-)(j) = -0.008(1) kHz. Double resonance experiments were used on some transitions to verify assignments and to obtain splittings for cases when the b-dipole transitions were difficult to measure. The experimental difference in energy between the two tunneling states is 291.428(5) MHz for proton-proton exchange and 3.35(2) MHz for the deuterium-deuterium exchange. The vibration-rotation coupling constant between the two levels, F(ab), is 120.7(2) MHz for the proton-proton exchange. With one deuterium atom substituted in either of the hydrogen-bonding protons, the tunneling splittings were not observed for a-dipole transitions, supporting the assignment of the splitting to the concerted proton tunneling motion. The spectra were obtained using three Flygare-Balle type spectrometers and one chirped-pulse machine at the University of Virginia. Rotational constants and centrifugal distortion constants were obtained for HCOOH···HOOCCCH, H(13)COOH···HOOCCCH, HCOOD···HOOCCCH, HCOOH···DOOCCCH, HCOOD···DOOCCCH, DCOOH···HOOCCCH, and DCOOD···HOOCCCH. High-level ab initio calculations provided initial rotational constants for the complex, structural parameters, and some details of the proton tunneling potential energy surface. A least squares fit to the isotopic data reveals a planar structure that is slightly asymmetric in the OH distances. The formic OH···O propiolic hydrogen bond length is 1.8 Å and the propiolic OH···O formic hydrogen bond length is 1.6 Å, for the equilibrium configuration. The magnitude of the dipole moment was experimentally determined to be 1.95(3) × 10(-30) C m (0.584(8) D) for the 0(+) states and 1.92(5) × 10(-30) C m (0.576(14) D) for the 0(-) states.


Assuntos
Alcinos/química , Formiatos/química , Propionatos/química , Prótons , Dimerização , Ligação de Hidrogênio , Micro-Ondas
5.
Phys Chem Chem Phys ; 13(31): 13912-9, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21743896

RESUMO

The rotational spectrum of the cyclic (HCl)(2)H(2)O cluster has been identified for the first time in the chirped pulse, Fourier transform microwave spectrum of a supersonically expanded HCl/H(2)O/Ar mixture. The spectrum was measured at frequencies 6-18.5 GHz, and transitions in two inversion-tunneling states, at close to 1 : 3 relative intensity, have been assigned for the parent species. The two single (37)Cl isotopic species, and the double (37)Cl species have been assigned in the natural abundance sample, and the (18)O and HDO species of the cluster were identified in isotopically enriched samples. The rich nuclear quadrupole hyperfine structure due to the presence of two chlorine nuclei has been satisfactorily fitted and provided useful information on the nonlinearity of intermolecular bonds in the cluster. The r(s) heavy atom geometry of the cluster was determined and the strongest bond in the intermolecular cycle r(O···HCl) = 3.126(3) Å, is found to be intermediate in length between the values in H(2)O···HCl and (H(2)O)(2)HCl. The fitted spectroscopic constants and derived molecular properties are compared with ab initio predictions, and a discussion of complexation effects in these three clusters is made.

6.
J Phys Chem A ; 115(34): 9748-63, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21667993

RESUMO

Infrared spectra of jet-cooled CH(3)OD and CH(3)OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH(3)OH only). Twagirayezu et al. reported the analysis of ν(3) symmetric CH stretch region (2750-2900 cm(-1); Twagirayezu et al. J. Phys. Chem. A 2010, 114, 6818), and the present work addresses the more complicated higher frequency region (2900-3020 cm(-1)) containing the two asymmetric CH stretches (ν(2) and ν(9)). The additional complications include a higher density of coupled states, more extensive mixing, and evidence for Coriolis as well as anharmonic coupling. The overall observed spectra contain 17 interacting vibrational bands for CH(3)OD and 28 for CH(3)OH. The sign and magnitude of the torsional tunneling splittings are deduced for three CH stretch fundamentals (ν(3), ν(2), ν(9)) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. Above 2900 cm(-1), the available doorway states are CH bending states, but below, the doorway states also involve OH bending. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (∼200 fs) initial decay of the bright state followed by a second, slower redistribution (about 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases.

7.
J Phys Chem A ; 115(24): 6472-80, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21591798

RESUMO

Methyl formate presents a challenge for the conventional chemical mechanisms assumed to guide interstellar organic chemistry. Previous studies of potential formation pathways for methyl formate in interstellar clouds ruled out gas-phase chemistry as a major production route, and more recent chemical kinetics models indicate that it may form efficiently from radical-radical chemistry on ice surfaces. Yet, recent chemical imaging studies of methyl formate and molecules potentially related to its formation suggest that it may form through previously unexplored gas-phase chemistry. Motivated by these findings, two new gas-phase ion-molecule formation routes are proposed and characterized using electronic structure theory with conformational specificity. The proposed reactions, acid-catalyzed Fisher esterification and methyl cation transfer, both produce the less stable trans-conformational isomer of protonated methyl formate in relatively high abundance under the kinetically controlled conditions relevant to interstellar chemistry. Gas-phase neutral methyl formate can be produced from its protonated counterpart through either a dissociative electron recombination reaction or a proton transfer reaction to a molecule with larger proton affinity. Retention (or partial retention) of the conformation in these neutralization reactions would yield trans-methyl formate in an abundance that exceeds predictions under thermodynamic equilibrium at typical interstellar temperatures of ≤100 K. For this reason, this conformer may prove to be an excellent probe of gas-phase chemistry in interstellar clouds. Motivated by new theoretical predictions, the rotational spectrum of trans-methyl formate has been measured for the first time in the laboratory, and seven lines have now been detected in the interstellar medium using the publicly available PRIMOS survey from the NRAO Green Bank Telescope.

8.
Phys Chem Chem Phys ; 12(42): 14263-70, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20886143

RESUMO

The microwave spectra of four isotopologues of the CHClF(2)-HCCH dimer have been measured and used to determine the structure of the complex. An initial scan over the 7-18 GHz region using the chirped-pulse microwave spectrometer at the University of Virginia provided initial assignments of the (35)Cl and (37)Cl isotopologues, with two additional H(13)C(13)CH species assigned using the resonant cavity Balle-Flygare microwave spectrometer at Eastern Illinois University. For the most abundant isotopologue, the rotational constants and quadrupole coupling constants are: A = 3301.21(4) MHz, B = 1353.4268(19) MHz, C = 1153.7351(18) MHz, χ(aa) = 34.681(12) MHz, χ(bb) = -69.70(3) MHz, χ(cc) = 35.02(2) MHz and χ(ab) = -8.8(3) MHz, in good agreement with ab initio calculations at the MP2/6-311++G(2d,2p) level. The alignment of CHClF(2) with respect to acetylene reveals a C-Hπ interaction, with a secondary C-ClH-C interaction also present between the two monomers. The fitted distance between the CHClF(2) hydrogen atom and the center of the triple bond is 2.730(6) Å, the distance between the chlorine atom and the acetylenic hydrogen is 3.061(38) Å, and the C-Hπ angle is 148.2(6)°. In addition, the centrifugal distortion constants give an estimate of the binding energy for the weak interaction of about 4.9(5) kJ mol(-1), in reasonable agreement with several similar complexes.

9.
J Phys Chem A ; 114(25): 6818-28, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527865

RESUMO

Coherence-converted population transfer infrared-microwave double-resonance spectroscopy is used to record the infrared spectra of jet-cooled CH(3)OH and CH(3)OD. Population transfer induced by a pulsed IR laser is detected by Fourier transform microwave spectroscopy background-free using a two-MW pulse sequence. The observed spectrum of CH(3)OH in the nu(3) symmetric CH stretch region contains 12 interacting vibrational bands, whereas in CH(3)OD, only one vibrational band is observed in the same interval (2750-2900 cm(-1)). The bright state, responsible for the transitions observed in this region, is not just nu(3) but also contains an admixture of the binary CH bending combinations, particularly 2nu(5). The lack of interacting bands in CH(3)OD confirms that in CH(3)OH the binary combinations of the OH bend (nu(6)) and a CH bend (nu(4), nu(5), nu(10)) act as doorway states linking the bright state to higher order combination vibrations involving torsional excitation. A time-dependent interpretation of the frequency-resolved spectra reveals a fast (approximately 200 fs) initial decay of the bright state followed by a slower (1-2 ps) redistribution among the lower frequency modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA