Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 19(6): 1093-1112, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30672126

RESUMO

Organic photovoltaics (OPVs) have experienced continued interest over the last 25 years as a viable technology for the generation of power. Phthalocyanines are among the oldest commercial dyes and have been utilized in some of the earliest examples of OPVs. In recent years, the use of boron subphthalocyanines (BsubPcs) and silicon phthalocyanines (SiPcs) has attracted a flurry of interest with some examples of fullerene-free devices reaching power conversion efficiencies >8 %. Unlike other more common divalent phthalocyanines such as copper or zinc, BsubPcs and SiPcs contain additional axial groups that can easily be functionalized without significantly affecting the optoelectronic properties of the macrocycle. This handle facilitates our ability to tune the solid-state arrangement and other physical characteristics such as solubility ultimately giving us the ability to improve the thin film processing and final device performance. This review covers recent studies on the development of BsubPcs and SiPcs for use as active materials in organic photovoltaics.

2.
RSC Adv ; 8(56): 31967-31971, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35547475

RESUMO

Shape and size controlled nanostructures are critical for nanotechnology and have versatile applications in understanding interfacial phenomena of various multi-phase systems. Facile synthesis of fluorescent nanostructures remains a challenge from conventional precursors. In this study, bio-inspired catecholamines, dopamine (DA), epinephrine (EP) and levodopa (LDA), were used as precursors and fluorescent nanostructures were synthesized via a simple one pot method in a water-alcohol mixture under alkaline conditions. DA and EP formed fluorescent spheres and petal shaped structures respectively over a broad spectrum excitation wavelength, whereas LDA did not form any particular structure. However, the polyepinephrine (PEP) micropetals were formed by weaker interactions as compared to covalently linked polydopamine (PDA) nanospheres, as revealed by NMR studies. Application of these fluorescent structures was illustrated by their adsorption behavior at the oil/water interface using laser scanning confocal microscopy. Interestingly, PDA nanospheres showed complete coverage of the oil/water interface despite its hydrophilic nature, as compared to hydrophobic PEP micropetals which showed a transient coverage of the oil/water interface but mainly self-aggregated in the water phase. The reported unique fluorescent organic structures will play a key role in understanding various multi-phase systems used in aerospace, biomedical, electronics and energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...