Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6612): 1328-1332, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36108023

RESUMO

The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Bactérias/classificação , Bactérias/genética , Criança , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Oxigênio/metabolismo
2.
Cell Rep ; 37(8): 110057, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818542

RESUMO

The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn's disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Hominidae/microbiologia , Animais , Bactérias/genética , Células Epiteliais/metabolismo , Fezes/microbiologia , Expressão Gênica/genética , Gorilla gorilla/microbiologia , Hominidae/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Microbiota/genética , Pan troglodytes/microbiologia , Filogenia , Pongo/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1808): 20190598, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32772669

RESUMO

Recent comparative studies have found evidence consistent with the action of natural selection on gene regulation across primate species. Other recent work has shown that the microbiome can regulate host gene expression in a wide range of relevant tissues, leading to downstream effects on immunity, metabolism and other biological systems in the host. In primates, even closely related host species can have large differences in microbiome composition. One potential consequence of these differences is that host species-specific microbial traits could lead to differences in gene expression that influence primate physiology and adaptation to local environments. Here, we will discuss and integrate recent findings from primate comparative genomics and microbiome research, and explore the notion that the microbiome can influence host evolutionary dynamics by affecting gene regulation across primate host species. This article is part of the theme issue 'The role of the microbiome in host evolution'.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Genoma , Microbiota , Primatas/genética , Primatas/microbiologia , Animais , Genômica , Interações entre Hospedeiro e Microrganismos
4.
mSystems ; 4(5)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481602

RESUMO

Variation in gut microbiome is associated with wellness and disease in humans, and yet the molecular mechanisms by which this variation affects the host are not well understood. A likely mechanism is that of changing gene regulation in interfacing host epithelial cells. Here, we treated colonic epithelial cells with live microbiota from five healthy individuals and quantified induced changes in transcriptional regulation and chromatin accessibility in host cells. We identified over 5,000 host genes that change expression, including 588 distinct associations between specific taxa and host genes. The taxa with the strongest influence on gene expression alter the response of genes associated with complex traits. Using ATAC-seq, we showed that a subset of these changes in gene expression are associated with changes in host chromatin accessibility and transcription factor binding induced by exposure to gut microbiota. We then created a manipulated microbial community with titrated doses of Collinsella, demonstrating that manipulation of the composition of the microbiome under both natural and controlled conditions leads to distinct and predictable gene expression profiles in host cells. Taken together, our results suggest that specific microbes play an important role in regulating expression of individual host genes involved in human complex traits. The ability to fine-tune the expression of host genes by manipulating the microbiome suggests future therapeutic routes.IMPORTANCE The composition of the gut microbiome has been associated with various aspects of human health, but the mechanism of this interaction is still unclear. We utilized a cellular system to characterize the effect of the microbiome on human gene expression. We showed that some of these changes in expression may be mediated by changes in chromatin accessibility. Furthermore, we validate the role of a specific microbe and show that changes in its abundance can modify the host gene expression response. These results show an important role of gut microbiota in regulating host gene expression and suggest that manipulation of microbiome composition could be useful in future therapies.

5.
ACS Synth Biol ; 6(3): 566-581, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27936603

RESUMO

Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.


Assuntos
Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genética , Etanol/metabolismo , Fermentação/genética , Hidrólise , Engenharia Metabólica/métodos , Fenótipo , Plantas/metabolismo , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA