Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38139786

RESUMO

Melanoma, a severe form of skin cancer intricately linked to genetic and environmental factors, is predicted to reach 100,000 new cases worldwide by 2040, underscoring the need for effective and safe treatment options. In this study, we assessed the efficacy of a photosensitizer called Chlorophyll A (Chl-A) incorporated into hydrogels (HGs) made of chitosan (CS) and poloxamer 407 (P407) for Photodynamic Therapy (PDT) against the murine melanoma cell line B16-F10. The HG was evaluated through various tests, including rheological studies, SEM, and ATR-FTIR, along with cell viability assays. The CS- and P407-based HGs effectively released Chl-A and possessed the necessary properties for topical application. The photodynamic activity of the HG containing Chl-A was evaluated in vitro, demonstrating high therapeutic potential, with an IC50 of 25.99 µM-an appealing result when compared to studies in the literature reporting an IC50 of 173.8 µM for cisplatin, used as a positive control drug. The developed formulation of CS and P407-based HG, serving as a thermosensitive system for topical applications, successfully controlled the release of Chl-A. In vitro cell studies associated with PDT exhibited potential against the melanoma cell line.

2.
Pharmaceutics ; 15(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514096

RESUMO

Nanomedicine is a special medical field focused on the application of nanotechnology to provide innovations for healthcare in different areas, including the treatment of a wide variety of diseases, including cancer [...].

3.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986734

RESUMO

The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296737

RESUMO

Photodynamic therapy (PDT) mediated by photosensitizers loaded in nanostructures as solid lipid nanoparticles has been pinpointed as an effective and safe treatment against different skin cancers. Amazon butters have an interesting lipid composition when it comes to forming solid lipid nanoparticles (SLN). In the present report, a new third-generation photosensitizing system consisting of aluminum-phthalocyanine associated with Amazon butter-based solid lipid nanoparticles (SLN-AlPc) is described. The SLN was developed using murumuru butter, and a monodisperse population of nanodroplets with a hydrodynamic diameter of approximately 40 nm was obtained. The study of the permeation of these AlPc did not permeate the analyzed skin, but when incorporated into the system, SLN-AlPc allowed permeation of almost 100% with 8 h of contact. It must be emphasized that SLN-AlPc was efficient for carrying aluminum-phthalocyanine photosensitizers and exhibited no toxicity in the dark. Photoactivated SLN-AlPc exhibited a 50% cytotoxicity concentration (IC50) of 19.62 nM when applied to B16-F10 monolayers, and the type of death caused by the treatment was apoptosis. The exposed phospholipid phosphatidylserine was identified, and the treatment triggered a high expression of Caspase 3. A stable Amazon butter-based SLN-AlPc formulation was developed, which exhibits strong in vitro photodynamic activity on melanoma cells.

5.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015189

RESUMO

Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.

6.
Nanomaterials (Basel) ; 12(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35683711

RESUMO

Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.

7.
Lasers Med Sci ; 37(5): 2509-2516, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35119554

RESUMO

The aim of this study is to investigate the antineoplastic potential of photodynamic therapy (PDT) mediated by an aluminum-phthalocyanine chloride nanoemulsion (AlPc-NE), against an oral squamous cell carcinoma (OSCC) cell line in vitro. Both OSCC (SCC9) and A431 cell lines were studied in vitro. Four study groups were used: Group 1 (phosphate-buffered saline [PBS]), Group 2 (PBS + 28.3 J/cm2 irradiation), Group 3 (AlPc-NE alone), and Group 4 (AlPc-NE + 28.3 J/cm2 irradiation). To test the effect of PDT with AlPc-NE, cell viability, migration, and cell death assays were performed. Moreover, the expressions of Ki-67 and TP53 were evaluated using immunoassays. The results showed that PDT mediated by all AlPc-NE concentrations evaluated (i.e., 0.7, 0.35, and 0.17 nM AlPc) significantly reduced the viability of SCC9 cells. Migration and cell death assays also revealed that PDT with AlPc-NE significantly reduced the rate of migration and increased cell death compared to the control groups. In addition, it was found that PDT with AlPc-NE reduced Ki-67 and mutated TP53 immunoexpression. PDT with AlPc-NE is effective in reducing the viability and migration of SCC9. Moreover, PDT with AlPc-NE nanoemulsions reduces the cell proliferation and expression of mutant TP53.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Alumínio , Carcinoma de Células Escamosas/tratamento farmacológico , Humanos , Isoindóis , Antígeno Ki-67 , Neoplasias Bucais/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
8.
Pharmaceutics ; 14(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057091

RESUMO

Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs-CRT, HSP70, HSP90, HMGB1, and IL-1ß-were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm2 exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.

9.
Nanomedicine (Lond) ; 17(3): 167-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048742

RESUMO

Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.


Assuntos
Curcumina , Nanopartículas , Animais , Portadores de Fármacos , Lipídeos , Lipossomos , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula
10.
Nanomedicine (Lond) ; 17(27): 2073-2088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36853205

RESUMO

Aim: Investigate the heterogeneous tumor tissue organization and examine how this condition can interfere with the passive delivery of a lipid nanoemulsion in two breast cancer preclinical models (4T1 and Ehrlich). Materials & methods: The authors used in vivo image techniques to follow the nanoemulsion biodistribution and microtomography, as well as traditional histopathology and electron microscopy to evaluate the tumor structural characteristics. Results & conclusion: Lipid nanoemulsion was delivered to the tumor, vascular organization depends upon the subtumoral localization and this heterogeneous organization promotes a nanoemulsion biodistribution to the highly vascular peripherical region. Also, the results are presented with a comprehensive mathematical model, describing the differential biodistribution in two different breast cancer models, the 4T1 and Ehrlich models.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Linhagem Celular Tumoral , Distribuição Tecidual , Nanopartículas/química , Lipídeos , Neoplasias da Mama/diagnóstico por imagem , Emulsões/química
12.
Infect Chemother ; 53(2): 342-354, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34216127

RESUMO

BACKGROUND: Photodynamic therapy (PDT) using chloroaluminium phthalocyanine (ClAlPc) and paromomycin sulfate (PM) can be effective against New World Leishmania species involved in cutaneous leishmaniasis (CL). The aim of this study is to assay the skin permeation and the antileishmanial effects of a nanoemulsion (NE) containing both ClAlPc and PM in experimental CL by Leishmania (Viannia) braziliensis. MATERIAL AND METHODS: Cremophor ELP/castor oil-based NEs were prepared by a low-energy method and characterized for their physicochemical parameters. The NEs were used to deliver both ClAlPc and PM to leishmania cells. The in vitro toxicity of NEs were tested in vitro against L. (V.) braziliensis and THP-1 cells. The in vivo toxicity was assessed in non-infected BALB/c mice. Ex-vivo permeation and retention studies using healthy mice skin were also conducted. Finally, the in vivo activity of NE-PM+ClAlPc after PDT was tested in BALB/c mice infected with parasites. RESULTS: NEs are colloidally stable with average droplet diameter of 30 nm, polydispersity index (PDI) below 0.2, and zeta potential near zero. Both promastigotes and intracellular amastigotes treated with NE-PM, NE-ClAlPc and NE-PM+ClAlPc were inhibited at >50%, >95%, >88%, respectively, after PDT with a phototoxic index (PI) >1.2. No skin ClAlPc permeation was observed. In contrast, PM skin permeation was 80-fold higher using PM-loaded NE formulation in comparison to aqueous PM solution. Topical treatment with NE formulations showed no signs of local toxicity or genotoxicity. In addition, concentrations of PM between 27.3 - 292.5 µM/25 mg of tissue were detected in different organs. In vivo, the NE-PM+ClAlPc treatment did not reduce skin lesions. CONCLUSION: The Cremophor ELP/castor oil NE formulation increases the permeation of PM through the skin and can be used to co-deliver PM plus ClAlPc for combined PDT protocols. However, the lack of efficacy in the in vivo model evidences that the therapeutical scheme has to be improved.

14.
J Photochem Photobiol B ; 216: 112131, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517071

RESUMO

Cryptococcus is a globally distributed fungal pathogen that primarily afflicts immunocompromised individuals. The therapeutic options are limited and include mostly amphotericin B or fluconazole, alone or in combination. The extensive usage of antifungals allowed the selection of resistant pathogens posing threats to global public health. Histone deacetylase genes are involved in Cryptococcus virulence, and in pathogenicity and resistance to azoles in Candida albicans. Aiming to assess whether histone deacetylase genes are involved in antifungal response and in synergistic drug interactions, we evaluated the activity of amphotericin B, fluconazole, sulfamethoxazole, sodium butyrate or trichostatin A (histone deacetylase inhibitors), and hydralazine or 5- aza-2'-deoxycytidine (DNA methyl-transferase inhibitors) against different Cryptococcus neoformans strains, C. neoformans histone deacetylase null mutants and Cryptococcus gattii NIH198. The drugs were employed alone or in different combinations. Fungal growth after photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion, alone or in combination with the aforementioned drugs, was assessed for the C. neoformans HDAC null mutant strains. Our results showed that fluconazole was synergistic with sodium butyrate or with trichostatin A for the hda1Δ/hos2Δ double mutant strain. Sulfamethoxazole was synergistic with sodium butyrate or with hydralazine also for hda1Δ/hos2Δ. These results clearly indicate a link between HDAC impairment and drug sensitivity. Photodynamic therapy efficacy on controlling the growth of the HDAC mutant strains was increased by amphotericin B, fluconazole, sodium butyrate or hydralazine. This is the first study in Cryptococcus highlighting the combined effects of antifungal drugs, histone deacetylase or DNA methyltransferase inhibitors and photodynamic therapy in vitro.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Criptococose/tratamento farmacológico , Cryptococcus neoformans/enzimologia , Epigênese Genética/efeitos dos fármacos , Histona Desacetilases/genética , Indóis/metabolismo , Compostos Organometálicos/metabolismo , Fotoquimioterapia/métodos , Anfotericina B/química , Ácido Butírico/química , Sinergismo Farmacológico , Emulsões/química , Fluconazol/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/química , Indóis/farmacologia , Nanopartículas/química , Compostos Organometálicos/farmacologia , Sulfametoxazol/química
15.
Braz. arch. biol. technol ; 64: e21190387, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153290

RESUMO

HIGHLIGHTS Production of lipid nanoemulsions (<100 nm) of industrial interest with low energy demand. The antioxidant properties of babassu oil have been improved and the nanoemulsions are not cytotoxic. Babassu oil is a food and medicinal product. The nanoemulsion is strategic for the developed of new antioxidants phytotherapeutics.


Abstract Background: Babassu oil is an extract from a Brazilian native coconut (Orbignya phalerata Martius) and is used both as a food and a medicinal product. Methods: we produced two babassu oil nanoemulsions and evaluated them regarding their nanoscopic stability, antioxidant activity and cytotoxicity.The nanoemulsions were characterized by Dynamic Light Scattering, and their stability was investigated for 120 days. The antioxidant activity was assessed by Spectroscopy Electron Paramagnetic Resonance, and the cytotoxicity was assessed by a colorimetric method (MTT) with the NIH/3T3 cell lineage. Results: the results showed nanoemulsions with average hydrodynamic diameter lower than 100 nm (p(0.001).and a polydispersity index of less than 0.3 (p(0.001), indicating monodisperse systems and good stability at room temperature. The exposure of nanoemulsions at varying pH revealed that the isoelectric point was at 3.0, and the images obtained by Transmission Electron Microscopy showed spherical droplets with a size 27 nm. The antioxidant activity showed that the babassu nanoemulsions exposed to free radicals had a better response when compared to the oil free samples. The cell viability assays showed low toxicity of the formulation with viability over 92% (p(0.05). Conclusion: babassu oil nanoformulations showed low polydispersity and kinetic stability with effective antioxidant action. Therefore, they can be promising for application in the food industry or as antioxidant phytotherapeutics.


Assuntos
Óleo de Palmeira/química , Nanotecnologia , Antioxidantes , Extratos Vegetais/química , Indústria Alimentícia , Citotoxinas , Microscopia Eletrônica de Transmissão , Emulsões , Nanocompostos
16.
Nanomedicine (Lond) ; 15(28): 2753-2770, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179587

RESUMO

Aim: To investigate the effect of liposomes containing the classical cytotoxic drugs paclitaxel and doxorubicin (Lipo-Pacli/Dox), against a metastatic breast cancer model. We also investigated if Lipo-Pacli/Dox was capable of reverting the tolerogenic environment of metastatic lesions. Materials & methods: Immunogenic cell death induction by the Pacli/Dox combination was assessed in vitro. Antitumor activity and in vivo safety of Lipo-Pacli/Dox were evaluated using a 4T1 breast cancer mouse model Results: Lipo-Pacli/Dox, with a size of 189 nm and zeta potential of -5.01 mV, promoted immune system activation and partially controlled the progression of pulmonary metastasis. Conclusion: Lipo-Pacli/Dox was useful to control both primary tumor and lung metastasis in breast cancer (4T1) mice model. Additionally, Lipo-Pacli/Dox acts as an immunological modulator for this metastatic breast cancer model.


Assuntos
Lipossomos , Neoplasias Pulmonares , Animais , Antibióticos Antineoplásicos , Linhagem Celular Tumoral , Doxorrubicina , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel , Prognóstico
17.
J Mater Chem B ; 8(47): 10681-10685, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33155000

RESUMO

The development of innovative nanomedicine has raised the standards over the last few decades. The establishment of research institutes with robust budgets dedicated to nanomedicine has created promise for the development of products based on biomedical applications of nanotechnology. Currently, this development meets obstacles because some of the scientific community has raised concerns regarding the launch of nanomedicine in the market. In this review highlight, we aimed to discuss some of these concerns and contribute to this discussion. For this purpose, we enumerated three issues that should be deeply discussed by the nanotech community to improve the translation of innovation from the laboratory to the market: (1) set-up more effective scaled-up industrial processes; (2) correlate data from preclinical and clinical studies with nanomedical developments; (3) optimize the incorporation of nanoparticles in a compatible final pharmaceutical form. Other issues are also important for this discussion, but we believe that these three are fundamental aspects to bridge the gap between basic nanoscience knowledge to market nanomedical innovations.


Assuntos
Desenvolvimento de Medicamentos/tendências , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Animais , Ensaios Clínicos como Assunto/métodos , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Invenções/tendências , Nanomedicina/tendências , Nanotecnologia/métodos , Nanotecnologia/tendências
19.
J Biomater Sci Polym Ed ; 31(15): 1977-1993, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589525

RESUMO

The efficacy and safety of photodynamic therapy (PDT) have drawn much attention from clinicians and researchers in the field of anticancer treatments since the last century. Despite the numerous positive outcomes, the works on PDT have brought to light over the last decades, much room remains for improvements in PDT tools, mainly on the photosensitizer molecules. This work reports the first experiments evidencing the photosensitizing activity of DHX-1, a xanthene derivative-based near-infrared probe recently described in the literature, both as a free molecule and associated to a nanostructured lipid carrier. The results show that the DHX-1 presents a broad band of light absorption within the optical window of biological tissues (600-800 nm), generates reactive oxygen species when photoactivated, and is phototoxic against murine breast adenocarcinoma 4T1 cells and murine fibroblast NIH-3T3 in vitro. Moreover, the association of DHX-1 to a nanostructured lipid carrier strongly reduced its phototoxicity against the normal cell line.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Xantenos
20.
J Photochem Photobiol B ; 204: 111808, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006892

RESUMO

Photodynamic therapy (PDT) is effective in the treatment of different types of cancer, such as basal cell carcinoma and other superficial cancers. However, improvements in photosensitizer delivery are still needed, and the use of PDT against more deeply located tumors has been the subject of many studies. Thus, the goal of this study was to evaluate the efficacy of a nanoemulsion containing aluminium-phthalocyanine (AlPc-NE) as a mediator of photodynamic therapy (PDT-AlPc-NE) against grafted 4T1 breast adenocarcinoma tumors in mice (BALB/c). Short after the appearance of the tumor, the animals were divided into groups (n = 5) as follows: untreated; only AlPc-NE and treated with PDT-AlPc-NE. The tumor volume was measured with a digital calliper at specific times. The presence of metastasis in the lungs was evaluated by microtomography and histopathological analyses. The results show that the application of PDT-AlPc-NE eradicated the transplanted tumors in all the treated animals, while the animals from control groups presented a robust increase in the tumor volume. Still more significantly, microtomography showed the animals submitted the PDT-AlPc-NE to be free of detectable metastasis in the lungs. The histological analysis of the lungs further confirmed the results verified by the microtomography. Therefore, this study suggests that PDT-AlPc-NE is effective in the elimination of experimentally grafted breast tumors in mice and also in preventing the formation of metastasis in the lungs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Alumínio/química , Neoplasias da Mama/tratamento farmacológico , Indóis/química , Neoplasias Pulmonares/tratamento farmacológico , Nanoestruturas/química , Fármacos Fotossensibilizantes/uso terapêutico , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Isoindóis , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transplante Homólogo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...