Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 22(6): 1694-1704, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26955035

RESUMO

Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

2.
IEEE Trans Vis Comput Graph ; 22(7): 1802-1815, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26812726

RESUMO

Information visualization has traditionally limited itself to 2D representations, primarily due to the prevalence of 2D displays and report formats. However, there has been a recent surge in popularity of consumer grade 3D displays and immersive head-mounted displays (HMDs). The ubiquity of such displays enables the possibility of immersive, stereoscopic visualization environments. While techniques that utilize such immersive environments have been explored extensively for spatial and scientific visualizations, contrastingly very little has been explored for information visualization. In this paper, we present our considerations of layout, rendering, and interaction methods for visualizing graphs in an immersive environment. We conducted a user study to evaluate our techniques compared to traditional 2D graph visualization. The results show that participants answered significantly faster with a fewer number of interactions using our techniques, especially for more difficult tasks. While the overall correctness rates are not significantly different, we found that participants gave significantly more correct answers using our techniques for larger graphs.

3.
IEEE Trans Vis Comput Graph ; 15(6): 1129-36, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834181

RESUMO

In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

4.
IEEE Trans Vis Comput Graph ; 14(6): 1301-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988977

RESUMO

Network data frequently arises in a wide variety of fields, and node-link diagrams are a very natural and intuitive representation of such data. In order for a node-link diagram to be effective, the nodes must be arranged well on the screen. While many graph layout algorithms exist for this purpose, they often have limitations such as high computational complexity or node colocation. This paper proposes a new approach to graph layout through the use of space filling curves which is very fast and guarantees that there will be no nodes that are colocated. The resulting layout is also aesthetic and satisfies several criteria for graph layout effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...