Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Metab ; 40: 101026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32473405

RESUMO

OBJECTIVE: Increasing energy expenditure through activation of brown adipose tissue (BAT) thermogenesis is an attractive approach to counteract obesity. It is therefore essential to understand the molecular mechanisms that control BAT functions. Until now several members of the Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway have been implicated as being relevant for BAT physiology. However, whether the STAT family member STAT5 is important for the thermogenic property of adipose tissues is unknown. Therefore, we have investigated the role of STAT5 in thermogenic fat in this paper. METHODS: We performed metabolic and molecular analyses using mice that harbor an adipocyte-specific deletion of Stat5a/b alleles. RESULTS: We found that STAT5 is necessary for acute cold-induced temperature maintenance and the induction of lipid mobilization in BAT following ß3-adrenergic stimulation. Moreover, mitochondrial respiration of primary differentiated brown adipocytes lacking STAT5 was diminished. Increased sensitivity to cold stress upon STAT5 deficiency was associated with reduced expression of thermogenic markers including uncoupling protein 1 (UCP1), while decreased stimulated lipolysis was linked to decreased protein kinase A (PKA) activity. Additionally, brown remodeling of white adipose tissue was diminished following chronic ß3-adrenergic stimulation, which was accompanied by a decrease in mitochondrial performance. CONCLUSION: We conclude that STAT5 is essential for the functionality and the ß-adrenergic responsiveness of thermogenic adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fator de Transcrição STAT5/metabolismo , Termogênese/fisiologia , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Resposta ao Choque Frio/fisiologia , Metabolismo Energético , Feminino , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/fisiologia , Fator de Transcrição STAT5/fisiologia
3.
Cytokine ; 124: 154569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30389231

RESUMO

The rising prevalence of obesity came along with an increase in associated metabolic disorders in Western countries. Non-alcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of the metabolic syndrome and is linked to primary stages of liver cancer development. Growth hormone (GH) regulates various vital processes such as energy supply and cellular regeneration. In addition, GH regulates various aspects of liver physiology through activating the Janus kinase (JAK) 2- signal transducer and activator of transcription (STAT) 5 pathway. Consequently, disrupted GH - JAK2 - STAT5 signaling in the liver alters hepatic lipid metabolism and is associated with NAFLD development in humans and mouse models. Interestingly, while STAT5 as well as JAK2 deficiency correlates with hepatic lipid accumulation, recent studies suggest that these proteins have unique ambivalent functions in chronic liver disease progression and tumorigenesis. In this review, we focus on the consequences of altered GH - JAK2 - STAT5 signaling for hepatic lipid metabolism and liver cancer development with an emphasis on lessons learned from genetic knockout models.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hormônio do Crescimento/metabolismo , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Janus Quinase 2/genética , Metabolismo dos Lipídeos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética
4.
Cytokine ; 124: 154573, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377054

RESUMO

Chronic liver diseases and the development of hepatocellular carcinoma are closely linked and pose a major medical challenge as treatment options are limited. Animal studies have shown that genetic deletion of the signal transducer and activator of transcription (STAT) 5 in liver is associated with higher susceptibility to fatty liver disease, fibrosis and cancer, indicating a protective role of hepatic STAT5 in mouse models of chronic liver disease. To investigate the role of STAT5 in the etiology of liver cancer in more detail, we applied the chemical carcinogen diethylnitrosamine (DEN) to mice harboring a hepatocyte-specific deletion of Stat5 (S5KO). At 8 months after DEN injections, tumor formation in S5KO was significantly reduced. This was associated with diminished tumor frequency and less aggressive liver cancer progression. Apoptosis and inflammation markers were not changed in S5KO livers suggesting that the reduced tumor burden was not due to impaired inflammatory response. Despite reduced mRNA expression of the DEN bio-activator cytochrome P450 2e1 (Cyp2e1) in S5KO livers, protein levels were similar. Yet, delayed tumor formation in S5KO mice coincided with decreased activation of c-Jun N-terminal Kinase (JNK). Taken together, while STAT5 has a protective role in fatty liver-associated liver cancer, it exerts oncogenic functions in DEN-induced liver cancer.


Assuntos
Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Fator de Transcrição STAT5/metabolismo , Alquilantes , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocinas/metabolismo , Dietilnitrosamina , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT5/genética
6.
Diabetologia ; 60(2): 296-305, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858140

RESUMO

AIMS/HYPOTHESIS: Dysfunction of lipid metabolism in white adipose tissue can substantially interfere with health and quality of life, for example in obesity and associated metabolic diseases. Therefore, it is important to characterise pathways that regulate lipid handling in adipocytes and determine how they affect metabolic homeostasis. Components of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway are involved in adipocyte physiology and pathophysiology. However, the exact physiological importance of the STAT family member STAT5 in white adipose tissue is yet to be determined. Here, we aimed to delineate adipocyte STAT5 functions in the context of lipid metabolism in white adipose tissue. METHODS: We generated an adipocyte specific knockout of Stat5 in mice using the Adipoq-Cre recombinase transgene followed by in vivo and in vitro biochemical and molecular studies. RESULTS: Adipocyte-specific deletion of Stat5 resulted in increased adiposity, while insulin resistance and gluconeogenic capacity was decreased, indicating that glucose metabolism can be improved by interfering with adipose STAT5 function. Basal lipolysis and fasting-induced lipid mobilisation were diminished upon STAT5 deficiency, which coincided with reduced levels of the rate-limiting lipase of triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL, encoded by Pnpla2) and its coactivator comparative gene identification 58 (CGI-58). In a mechanistic analysis, we identified a functional STAT5 response element within the Pnpla2 promoter, indicating that Pnpla2 is transcriptionally regulated by STAT5. CONCLUSIONS/INTERPRETATION: Our findings reveal an essential role for STAT5 in maintaining lipid homeostasis in white adipose tissue and provide a rationale for future studies into the potential of STAT5 manipulation to improve outcomes in metabolic diseases.


Assuntos
Adipócitos/metabolismo , Adiposidade/fisiologia , Fator de Transcrição STAT5/metabolismo , Células 3T3-L1 , Adiposidade/genética , Animais , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Glucose/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Mobilização Lipídica/genética , Mobilização Lipídica/fisiologia , Lipólise/genética , Lipólise/fisiologia , Masculino , Camundongos , Qualidade de Vida , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT5/genética
7.
Diabetes ; 66(2): 272-286, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27650854

RESUMO

Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from ß-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice.


Assuntos
Adipócitos/metabolismo , Envelhecimento/genética , Jejum , Comportamento Alimentar , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Obesidade/genética , Receptores de Glucocorticoides/genética , Adenilil Ciclases/metabolismo , Tecido Adiposo/metabolismo , Adiposidade/genética , Envelhecimento/metabolismo , Animais , Western Blotting , Cromatografia Líquida , Dieta Hiperlipídica , Metabolismo Energético , Fígado Gorduroso/genética , Hipertrofia , Insulina/metabolismo , Lipólise , Espectrometria de Massas , Metabolômica , Camundongos , Obesidade/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
8.
Sci Rep ; 6: 34719, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713471

RESUMO

Genetic deletion of the tyrosine kinase JAK2 or the downstream transcription factor STAT5 in liver impairs growth hormone (GH) signalling and thereby promotes fatty liver disease. Hepatic STAT5 deficiency accelerates liver tumourigenesis in presence of high GH levels. To determine whether the upstream kinase JAK2 exerts similar functions, we crossed mice harbouring a hepatocyte-specific deletion of JAK2 (JAK2Δhep) to GH transgenic mice (GHtg) and compared them to GHtgSTAT5Δhep mice. Similar to GHtgSTAT5Δhep mice, JAK2 deficiency resulted in severe steatosis in the GHtg background. However, in contrast to STAT5 deficiency, loss of JAK2 significantly delayed liver tumourigenesis. This was attributed to: (i) activation of STAT3 in STAT5-deficient mice, which was prevented by JAK2 deficiency and (ii) increased detoxification capacity of JAK2-deficient livers, which diminished oxidative damage as compared to GHtgSTAT5Δhep mice, despite equally severe steatosis and reactive oxygen species (ROS) production. The reduced oxidative damage in JAK2-deficient livers was linked to increased expression and activity of glutathione S-transferases (GSTs). Consistent with genetic deletion of Jak2, pharmacological inhibition and siRNA-mediated knockdown of Jak2 led to significant upregulation of Gst isoforms and to reduced hepatic oxidative DNA damage. Therefore, blocking JAK2 function increases detoxifying GSTs in hepatocytes and protects against oxidative liver damage.


Assuntos
Fígado Gorduroso/patologia , Deleção de Genes , Hormônio do Crescimento Humano/genética , Janus Quinase 2/genética , Fígado/patologia , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glutationa Transferase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Oncotarget ; 6(35): 37678-94, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26462019

RESUMO

Ewing sarcoma is an aggressive tumor of bone and soft tissue affecting predominantly children and young adults. Tumor-specific chromosomal translocations create EWS-FLI1 and similar aberrant ETS fusion proteins that drive sarcoma development in patients. ETS family fusion proteins and over-expressed ETS proteins are also found in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Transgenic expression of EWS-FLI1 in mice promotes high penetrance erythroid leukemia with dense hepatic and splenic infiltrations. We identified a small molecule, YK-4-279, that directly binds to EWS-FLI1 and inhibits its oncogenic activity in Ewing sarcoma cell lines and xenograft mouse models. Herein, we tested in vivo therapeutic efficacy and potential side effects of YK-4-279 in the transgenic mouse model with EWS-FLI1 induced leukemia. A two-week course of treatment with YK-4-279 significantly reduced white blood cell count, nucleated erythroblasts in the peripheral blood, splenomegaly, and hepatomegaly of erythroleukemic mice. YK-4-279 inhibited EWS-FLI1 target gene expression in neoplastic cells. Treated animals showed significantly better overall survival compared to control mice that rapidly succumbed to leukemia. YK-4-279 treated mice did not show overt toxicity in liver, spleen, or bone marrow. In conclusion, this in vivo study highlights the efficacy of YK-4-279 to treat EWS-FLI1 expressing neoplasms and support its therapeutic potential for patients with Ewing sarcoma and other ETS-driven malignancies.


Assuntos
Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/etiologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/toxicidade , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/toxicidade , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Proteína EWS de Ligação a RNA/toxicidade , Animais , Western Blotting , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Leucemia Eritroblástica Aguda/patologia , Camundongos , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/administração & dosagem , Proteína Proto-Oncogênica c-fli-1/administração & dosagem , RNA Mensageiro/genética , Proteína EWS de Ligação a RNA/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície
10.
Transl Oncol ; 8(2): 97-105, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25926075

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non-small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549) were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6). In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6-stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

11.
Nat Commun ; 6: 6285, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25734337

RESUMO

STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased Kras(G12D)-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-κB-induced IL-8 expression by sequestering NF-κB within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3-NF-κB-IL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinogênese , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Immunoblotting , Hibridização In Situ , Interleucina-8/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/genética , Estatísticas não Paramétricas , Análise Serial de Tecidos
12.
PLoS One ; 9(7): e100822, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013898

RESUMO

In targeted therapy, patient tumors are analyzed for aberrant activations of core cancer pathways, monitored based on biomarker expression, to ensure efficient treatment. Thus, diagnosis and therapeutic decisions are often based on the status of biomarkers determined by immunohistochemistry in combination with other clinical parameters. Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability. To make treatment decisions more reliable, automated image analysis is an attractive possibility to reproducibly quantify biomarker expression in patient tissue samples. We tested whether image analysis could detect subtle differences in protein expression levels. Gene dosage effects generate well-graded expression patterns for most gene-products, which vary by a factor of two between wildtype and haploinsufficient cells lacking one allele. We used conditional mouse models with deletion of the transcription factors Stat5ab in the liver as well Junb deletion in a T-cell lymphoma model. We quantified the expression of total or activated STAT5AB or JUNB protein in normal (Stat5ab+/+ or JunB+/+), hemizygous (Stat5ab+/Δ or JunB+/Δ) or knockout (Stat5abΔ/Δ or JunBΔ/Δ) settings. Image analysis was able to accurately detect hemizygosity at the protein level. Moreover, nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus was reliably detected and quantified using image analysis. We demonstrate that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability.


Assuntos
Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica/métodos , Fator de Transcrição STAT5/metabolismo , Animais , Biomarcadores Tumorais/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Camundongos , Camundongos Knockout , Reprodutibilidade dos Testes , Fator de Transcrição STAT5/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cell Endocrinol ; 361(1-2): 1-11, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22564914

RESUMO

Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.


Assuntos
Fígado Gorduroso/metabolismo , Hormônio do Crescimento/metabolismo , Crescimento e Desenvolvimento , Neoplasias Hepáticas/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Animais , Humanos
15.
Hepatology ; 55(3): 941-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22031092

RESUMO

UNLABELLED: Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. CONCLUSION: As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Gigantismo/fisiopatologia , Hormônio do Crescimento/fisiologia , Inflamação/fisiopatologia , Neoplasias Hepáticas/prevenção & controle , Mortalidade Prematura , Fator de Transcrição STAT5/fisiologia , Transdução de Sinais/fisiologia , Animais , Tamanho Corporal/fisiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Fígado Gorduroso/prevenção & controle , Hepatócitos/metabolismo , Hepatócitos/patologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/deficiência , Fator de Transcrição STAT5/genética , Ovinos
16.
Hepatology ; 54(4): 1398-409, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21725989

RESUMO

UNLABELLED: Growth hormone (GH)-activated signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid (GC)-responsive glucocorticoid receptor (GR) are important signal integrators in the liver during metabolic and physiologic stress. Their deregulation has been implicated in the development of metabolic liver diseases, such as steatosis and progression to fibrosis. Using liver-specific STAT5 and GR knockout mice, we addressed their role in metabolism and liver cancer onset. STAT5 single and STAT5/GR double mutants developed steatosis, but only double-mutant mice progressed to liver cancer. Mechanistically, STAT5 deficiency led to the up-regulation of prolipogenic sterol regulatory element binding protein 1 (SREBP-1) and peroxisome proliferator activated receptor gamma (PPAR-γ) signaling. Combined loss of STAT5/GR resulted in GH resistance and hypercortisolism. The combination of both induced expression of adipose tissue lipases, adipose tissue lipid mobilization, and lipid flux to the liver, thereby aggravating STAT5-dependent steatosis. The metabolic dysfunctions in STAT5/GR compound knockout animals led to the development of hepatic dysplasia at 9 months of age. At 12 months, 35% of STAT5/GR-deficient livers harbored dysplastic nodules and ∼ 60% hepatocellular carcinomas (HCCs). HCC development was associated with GH and insulin resistance, enhanced tumor necrosis factor alpha (TNF-α) expression, high reactive oxygen species levels, and augmented liver and DNA damage parameters. Moreover, activation of the c-Jun N-terminal kinase 1 (JNK1) and STAT3 was prominent. CONCLUSION: Hepatic STAT5/GR signaling is crucial for the maintenance of systemic lipid homeostasis. Impairment of both signaling cascades causes severe metabolic liver disease and promotes spontaneous hepatic tumorigenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/metabolismo , Hormônio do Crescimento/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT5/metabolismo , Análise de Variância , Animais , Western Blotting , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Imuno-Histoquímica , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Knockout , Distribuição Aleatória , Receptores de Glucocorticoides/genética , Valores de Referência , Medição de Risco , Transdução de Sinais , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...