Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(3): 1233-1245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37614102

RESUMO

Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood. We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants. There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal. These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.


Assuntos
Microbiota , Néctar de Plantas , Animais , Polinização/genética , Flores/genética , Plantas/microbiologia , Saccharomyces cerevisiae , Bactérias
2.
Environ Microbiol Rep ; 15(3): 170-180, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779256

RESUMO

Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species-poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non-sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co-culture across a subset of treatments. We found that some compounds such as H2 O2 suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeast Metschnikowia reukaufii was unaffected by most nectar compounds assayed. However, many non-nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe-specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non-sugar compounds can affect microbial community assembly in flowers.


Assuntos
Néctar de Plantas , Polinização , Néctar de Plantas/química , Polinização/fisiologia , Flores/microbiologia , Leveduras , Bactérias/genética
3.
J Econ Entomol ; 115(3): 852-862, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394543

RESUMO

Agricultural plant species differ in susceptibility to herbivores; therefore, identifying natural resistances or tolerances to pests can be leveraged to develop preventative, integrated pest management approaches. While many Citrus species are grown in California, most pest management guidelines are based upon research conducted on navel oranges [Citrus sinensis (L.) Osbeck; Sapindales: Rutaceae]. A recent study has established European earwigs (Forficula auricularia L.; Dermaptera: Forficulidae) as herbivores of young navel orange fruit, causing damage ranging from small bite marks to large chewed holes. It is unknown whether earwigs damage fruit of other citrus species. We conducted field experiments in which we caged earwigs to branch terminals bearing young fruit to explore potential differences in susceptibility of Citrus species to European earwigs. Specifically, we tested whether three species, navel oranges, clementines (C. clementina hort. ex Tanaka), and true mandarins (C. reticulata Blanco) exhibit differences in: 1) feeding deterrence to earwigs; 2) suitability as food for earwigs; 3) preferential abscission of damaged fruit; and 4) healing of damaged fruit. Earwigs caused heavy damage on navel orange and clementine fruit, whereas heavy damage was rare on true mandarin fruit. There was little evidence of preferential abscission of damaged fruit or healing of seriously damaged fruit. Consequently, several heavily damaged navel orange and one clementine fruit were retained to harvest and developed large scars. Overall, we found that Citrus fruit vary in their susceptibility to earwigs, and pest management strategies for earwigs should be refined to consider their varying effects on different Citrus species.


Assuntos
Citrus sinensis , Citrus , Animais , Auricularia , Frutas , Herbivoria
4.
FEMS Microbiol Ecol ; 97(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791198

RESUMO

Variation in dispersal ability among taxa affects community assembly and biodiversity maintenance within metacommunities. Although fungi and bacteria frequently coexist, their relative dispersal abilities are poorly understood. Nectar-inhabiting microbial communities affect plant reproduction and pollinator behavior, and are excellent models for studying dispersal of bacteria and fungi in a metacommunity framework. Here, we assay dispersal ability of common nectar bacteria and fungi in an insect-based dispersal experiment. We then compare these results with the incidence and abundance of culturable flower-inhabiting bacteria and fungi within naturally occurring flowers across two coflowering communities in California across two flowering seasons. Our microbial dispersal experiment demonstrates that bacteria disperse via thrips among artificial habitat patches more readily than fungi. In the field, incidence and abundance of culturable bacteria and fungi were positively correlated, but bacteria were much more widespread. These patterns suggest shared dispersal routes or habitat requirements among culturable bacteria and fungi, but differences in dispersal or colonization frequency by thrips, common flower visitors. The finding that culturable bacteria are more common among nectar sampled here, in part due to superior thrips-mediated dispersal, may have relevance for microbial life history, community assembly of microbes, and plant-pollinator interactions.


Assuntos
Microbiota , Tisanópteros , Animais , Bactérias/genética , Flores , Fungos , Néctar de Plantas , Polinização
5.
J Econ Entomol ; 114(4): 1722-1732, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34185851

RESUMO

In establishing Integrated Pest Management (IPM) plans for understudied pests, it is crucial to understand the nature of their herbivory and resulting damage. European earwig (Forficula auricularia L.; Dermaptera: Forficulidae) densities are increasing in citrus orchards in Central California. Field observations suggest that earwigs feed on young, developing citrus fruit, but this hypothesis had not been examined with formal experimentation. Forktailed bush katydid nymphs (Scudderia furcata Brunner von Wattenwyl; Orthoptera: Tettigoniidae) are well-known citrus herbivores that feed on young citrus fruit, and it is possible that earwig damage may be misdiagnosed as katydid damage. Here we report findings from two field experiments in navel oranges (Citrus sinensis (L.) Osbeck; Sapindales: Rutaceae) that together tested: (1) whether earwigs damage young citrus fruit; (2) whether the amount of damage earwigs generate differs across developmental stage or sex of adult earwigs; (3) the window of time during which fruit are most sensitive to earwig damage; (4) whether damaged fruit are retained to harvest; and (5) the resulting damage morphology caused by earwigs relative to katydids. Earwigs, particularly nymphs, chewed deep holes in young citrus fruit from 0 to 3 wk after petal fall. Fruit damaged by earwigs were retained and exhibited scars at harvest. The morphology and distribution of scars on mature fruit only subtly differed between earwigs and katydids. This study establishes that earwigs can be direct pests in mature navel orange trees by generating scars on fruit and likely contribute to fruit quality downgrades.


Assuntos
Citrus sinensis , Citrus , Ortópteros , Animais , Frutas , Herbivoria
6.
J Econ Entomol ; 114(1): 215-224, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33210704

RESUMO

Sweet oranges (Citrus sinensis (L.) Osbeck Sapindales: Rutaceae) dominated commercial citrus production in California until recently when there has been a shift to mandarins, mostly Citrus reticulata (Blanco) mandarins and Citrus clementina (hort. ex Tanaka) clementines. Past analyses of commercial field scouting and harvest data indicated that fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl), a major pest in oranges, are present in clementine groves, but that fruit scarring attributed to katydids is rare. Conversely, jagged or web-like scarring attributed to caterpillars was more prevalent than expected. We used two field experiments in four representative cultivars of clementines to test four explanatory hypotheses for this observation: 1) katydids do not feed on clementine fruit, 2) damaged clementine fruit recover, 3) damaged clementine fruit preferentially abscise, and 4) katydid scars on clementine fruit have a different, undocumented morphology, not recognized as katydid damage. We find support for the latter two hypotheses. Katydids fed readily on the clementine fruit of all cultivars tested, chewing irregular holes that developed into jagged or web-like scars of a range of shapes and often led to splitting and abscission of maturing fruit. The katydid scars often more closely resembled chewing caterpillar damage than the round katydid scars in oranges, suggesting that katydid damage is being misclassified in clementines. The resistance documented in some other mandarins was not observed. Katydids are clearly a frugivorous pest causing previously unrecognized scarring in clementines.


Assuntos
Citrus sinensis , Citrus , Ortópteros , Animais , Frutas
7.
J Econ Entomol ; 113(5): 2335-2342, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32651953

RESUMO

Integrated pest management (IPM) guidelines for horticulture are typically established from years of experimental research and experience for a crop species. Ecoinformatics methods can help to quickly adapt these guidelines following major changes in growing practices. Citrus production in California is facing several major challenges, one of which is a shift away from sweet oranges [Citrus sinensis (L.) Osbeck Sapindales: Rutaceae] toward mandarins (including mostly cultivars of C. reticulata Blanco and C. clementina hort. ex Tanaka). In the absence of IPM guidelines for mandarins, growers are relying on pest information developed from oranges. We mined a database of management records from commercial growers and consultants to determine densities for four arthropod pests: cottony cushion scale (Icerya purchasi Maskell Hemiptera: Monophlebidae), citricola scale (Coccus pseudomagnoliarum Kuwana Hemiptera: Coccidae), European earwig (Forficula auricularia Linnaeus Dermaptera: Forficulidae), citrus red mite (Panonychus citri McGregor Acari: Tetranychidae), and a natural enemy, predatory mites in the genus Euseius (Congdon Acarina: Phytoseiidae). Densities of cottony cushion scale were approximately 10-40 times higher in the two most commonly grown mandarin species than in sweet oranges, suggesting this pest is reaching outbreak levels more often on mandarins. Densities of the other pests and predatory mites did not differ significantly across citrus species. This is a first step toward establishing IPM guidelines for mandarins for these pests; more research is needed to determine how arthropod densities relate to crop performance in mandarins.


Assuntos
Artrópodes , Citrus sinensis , Citrus , Tetranychidae , Animais , California
8.
J Econ Entomol ; 112(6): 2767-2773, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260517

RESUMO

Several domesticated Citrus species are grown as major commercial crops in California. Despite this, farmers currently use a single set of management practices, originally created for sweet oranges (Citrus sinensis (L.) Osbeck [Sapindales: Rutaceae]), for both sweet oranges and all mandarin species. Mandarins, primarily Citrus reticulata Blanco, Citrus clementina hort. ex Tanaka, and Citrus unshiu Marcovitch, comprise almost 25% of California citrus acreage, and little work has been done to assess host-pest interactions for these species. Citrus thrips (Scirtothripscitri Moulton [Thysanoptera: Thripidae]) are one of the main pests in California citrus and are major targets for early spring, "petal fall" insecticide applications. We used mixed species citrus blocks to test the influence of Citrus species, including C. sinensis, C. reticulata, C. clementina, and C. unshiu, on 1) citrus thrips densities following petal fall; 2) citrus thrips-induced scarring on both the calyx and stylar ends of fruit; and 3) fruit deformation. Citrus sinensis and C. unshiu had relatively high citrus thrips densities and scarring levels, whereas C. reticulata had lower densities of citrus thrips and scarring levels. The age structure of citrus thrips populations also varied across Citrus species. Fruit deformity associated with citrus thrips scarring was found on all Citrus species examined. Scarring on the stylar-end of fruit, a previously largely ignored location of citrus thrips scarring, was found to be common in C. reticulata. It is clear from our work that species-specific management guidelines for citrus thrips are needed in sweet oranges and mandarins.


Assuntos
Citrus sinensis , Citrus , Tisanópteros , Animais , California , Frutas
9.
Oecologia ; 190(1): 69-83, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31049659

RESUMO

Disease and cannibalism are two strongly density-dependent processes that can suppress predator populations. Here we show that California populations of the omnivorous predatory bug Geocoris pallens are subject to infection by a pathogen, as yet unidentified, that elicits elevated expression of cannibalism. Laboratory experiments showed that the pathogen is moderately virulent, causing flattened abdomens, elevated nymphal mortality, delayed development, and reduced body size of adult females. Infection furthermore increases the expression of cannibalism. Field populations of Geocoris spp. declined strongly in association with sharp increases in the expression of egg cannibalism by adult G. pallens. Increased cannibalism was accompanied by a strongly bimodal distribution of cannibalism expression, with some females (putatively uninfected) expressing little cannibalism and others (putatively infected) consuming most or all of the eggs present. Highly cannibalistic females did not increase their consumption of Ephestia cautella moth eggs, suggesting that the high cannibalism phenotype reflected a specific loss of restraint against eating conspecifics. Highly cannibalistic females also often exhibited reduced egg laying, consistent with a virulent pathogen; less frequently, more cannibalistic females exhibited elevated egg laying, suggesting that cannibalism might also facilitate recycling of nutrients in eggs. Elevated cannibalism was not correlated with reduced prey availability or elevated field densities of G. pallens. Geocoris pallens population crashes appear to reflect the combined consequences of direct virulence-adverse pathogen effects on the infected host's physiology-and indirect virulence-mortality of both infected and uninfected individuals due to elevated cannibalism expression by infected individuals.


Assuntos
Canibalismo , Heterópteros , Animais , Tamanho Corporal , California , Feminino , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...