Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 40758-40777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819507

RESUMO

The presence of CECs in aquatic systems has raised significant concern since they are potentially harmful to the environment and human health. Eliminating CECs has led to the development of alternatives to treat wastewater, such as advanced oxidation processes (AOPs). The ultraviolet-mediated activation of monochloramine (UV/NH2Cl) is a novel and relatively unexplored AOPs for treating pollutants in wastewater systems. This process involves the production of amino radicals (•NH2) and chlorine radicals (Cl•) from the UV irradiation of NH2Cl. Studies have demonstrated its effectiveness in mitigating various CECs, exhibiting advantages, such as the potential to control the amount of toxic disinfection byproducts (TDBPs) formed, low costs of reagents, and low energy consumption. However, the strong influence of operating parameters in the degradation efficiency and existence of NH2Cl, the lack of studies of its use in real matrices and techno-economic assessments, low selectivity, and prolonged treatment periods must be overcome to make this technology more competitive with more mature AOPs. This review article revisits the state-of-the-art of the UV/NH2Cl technology to eliminate pharmaceutical and personal care products (PPCPs), micropollutants from the food industry, pesticides, and industrial products in aqueous media. The reactions involved in the production of radicals and the influence of operating parameters are covered to understand the formation of TDBPs and the main challenges and limitations of the UV/NH2Cl to degrade CECs. This review article generates critical knowledge about the UV/NH2Cl process, expanding the horizon for a better application of this technology in treating water contaminated with CECs.


Assuntos
Cloraminas , Raios Ultravioleta , Poluentes Químicos da Água , Cloraminas/química , Poluentes Químicos da Água/química , Desinfecção/métodos , Águas Residuárias/química , Purificação da Água/métodos , Oxirredução
2.
Chemosphere ; 341: 139988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669720

RESUMO

The performance of a pilot-scale boron-doped diamond (BDD) reactor through a numerical analysis of reaction rate parameters and enhanced mass transfer has been investigated. The main objective of this research is to evaluate the efficiency of the reactor in mineralizing and degrading caffeine as an emerging contaminant. Based on the kinetic mechanisms and mass transport correlations reported in the literature, two reaction rate kinetic models for caffeine degradation are proposed and analyzed. The models consider different electrolytes (NaCl and Na2SO4) and applied current densities. The kinetic fitting process utilizes the gradient-maximal electrochemical approach, together with orthogonal placement methods, fourth-order Runge-Kutta (RK4) methods, and Nelder & Mead methods for optimization of kinetic parameters and spatial discretization of the material balance. Experimental data obtained from a factorial design with four factors and two levels (24) validate the proposed kinetic models. Caffeine degradation is achieved with NaCl and Na2SO4 electrolytes at concentrations of 60 ppm and 100 ppm, respectively. The corresponding applied loads are 1.5 AhL-1 and 3 AhL-1. Na2SO4 exhibits superior performance with a total organic carbon (TOC) removal efficiency of 99.13%, while NaCl achieves 31.47% mineralization. The behavior of caffeine degradation under the operational and scale conditions demonstrates that NaCl, as a support electrolyte, enables controlled charge transfer (current density) during the degradation process. In contrast, Na2SO4 as a support electrolyte introduces a mixed control of charge and mass transfer. The pilot-scale kinetic parameters obtained in this study provide valuable insights into the support electrolyte dynamics and current density dynamics in BDD-based Electrooxidation (EO) systems, particularly in complex matrix applications. Furthermore, the observed electrical consumption supports the potential application of EO as a viable technology for industrial-scale tertiary wastewater treatment, specifically for caffeine removal.


Assuntos
Cafeína , Cloreto de Sódio , Eletricidade , Indústrias , Cinética
3.
Environ Sci Pollut Res Int ; 29(28): 42120-42129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983609

RESUMO

This work aims to integrate several hydrogen peroxide (H2O2) activation mechanisms, photolysis (UVC irradiation), chemical electron transfer (TiO2-P25 photocatalysis), and reaction with TiO2-P25 in dark conditions, for reactive oxygen species (ROS) generation towards the removal of contaminants of emerging concern (CECs), in a single unit operated in continuous-flow mode. An H2O2 stock solution is fed by the lumen side of a tubular ceramic membrane, delivering the oxidant to the (i) catalyst immobilized in the membrane shell-side and (ii) annular reaction zone (ARZ, space between membrane shell-side and outer quartz tube) where CECs contaminated water flows with a helix trajectory, being activated by UV light provided by four lamps placed symmetrically around the reactor. First, the effect of several parameters in the removal of a CEC target molecule, amoxicillin (AMX), was evaluated using a synthetic solution ([AMX]inlet = 2.0 mg L-1): (i) light source (UVA or UVC radiation), (ii) H2O2 dose, (iii) H2O2 injection method (radial permeation vs. upstream injection), and (iv) number of TiO2-P25 layers deposited on the membrane. The UVC/H2O2/TiO2 system with radial addition of H2O2 (20 mg L-1) and 9-TiO2-P25 layers provided the highest AMX removal efficiency (72.2 ± 0.5%) with a UV fluence of 45 mJ cm-2 (residence time of 4.6 s), due to the synergic effect of four mechanisms: (i) AMX photolysis, (ii) H2O2 photocleavage, (iii) TiO2-P25 photoactivation, and (iv) chemical reactions between H2O2 and TiO2-P25. The urban wastewater matrix showed a negative effect on AMX removal (~44%) due to the presence of ROS scavengers and light-filtering species.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amoxicilina , Cerâmica , Peróxido de Hidrogênio/química , Oxirredução , Espécies Reativas de Oxigênio , Titânio/química , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/análise
4.
Water Res ; 202: 117421, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390948

RESUMO

The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.


Assuntos
Purificação da Água , Catálise , Luz Solar , Raios Ultravioleta , Águas Residuárias
5.
Chemosphere ; 263: 128049, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297062

RESUMO

This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe2+) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side. Polluted water, containing amoxicillin (AMX) and oxidant (H2O2), flows continuously in the reactor annulus (space between the membrane shell-side and an outer quartz tube). The catalyst radial dispersion is enhanced by the helicoidal movement of water around the membrane shell-side, efficiently promoting its contact with H2O2 and UV light. The efficiency of photochemical and photocatalytic oxidation was evaluated as a function of catalyst dose, catalyst injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC) and aqueous solution matrix (synthetic vs real wastewater). At steady-state, photo-Fenton reaction with Fe2+ radial addition, driven by UVC light, showed the highest AMX removal for synthetic (∼65%, removal rate of 44 µMAMX/min, using [Fe2+]ARZ = 2 mg/L and [H2O2]inlet = 10 mg/L) and real municipal wastewaters (∼45%, removal rate of 31 µMAMX/min, with [Fe2+]ARZ = 5 mg/L and [H2O2]inlet = 40 mg/L), with a residence time of only 4.6 s.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Poluentes Químicos da Água/análise
6.
Data Brief ; 27: 104564, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709284

RESUMO

The XRD profiles and FTIR analysis of sludge aggregates, Mg-Al layered double hydroxides, produced during electrocoagulation processes are presented. The data describes the composition of materials (LDH) produced at different operations conditions (atmospheric conditions and Mg2+/Al3+ ratio). The data show the diffraction peaks of (003), (006), (018) and (110) crystal planes for hydrotalcite structure.

7.
Photochem Photobiol Sci ; 18(4): 920-928, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30758378

RESUMO

The present work reports the use of a flotation cell as a prospective reactor for ozonation and the intensification of ozonation (catalytic ozonation and photocatalytic ozonation). The effect of the pH, ozone concentration and loading catalyst was investigated. The performance of the flotation cell was compared with that of conventional reactors used in ozonation through the ozone utilized index (OUI), which was proposed in this work and relates the amount of ozone supplied to the system per milligram of degraded pollutant. The flotation cell has the lowest OUI, which indicates that the ozone supplied is highly consumed. It was found that the modified flotation cell is an efficient reactor for ozonation, catalytic ozonation and photocatalytic ozonation processes because total diclofenac degradation was achieved in a short time, mass transfer limitations were not found (Ha = 7.26), and it presented a relatively low energy consumption (1.15 kW h m-3).

8.
Photochem Photobiol Sci ; 18(4): 897-904, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30457636

RESUMO

This work reports the improvement in the photon absorption and degradation of acetaminophen (ACF) and diclofenac (DFC) by photosensitizing TiO2 with two types of dyes Eosin Y (Ey) and Rhodamine B (RhB). Experimental tests were carried out in a solar simulator for three hours for different systems and both pollutants. The influences of the TiO2 concentration (100, 200 and 800 mg L-1) and the catalyst-dye ratio (2%, 5% and 10%) were investigated. The degradation of the compounds was higher in the presence of TiO2-Ey compared to the TiO2-RhB and TiO2 for both pharmaceutical compounds, which was attributed to the anionic nature of Ey. DFC total degradation was achieved using 100 mg L-1 of catalyst loading and 10% of catalyst-dye ratio and the highest ACF degradation (71%) was obtained at 800 mg L-1 of catalyst loading and 5% of catalyst-dye ratio. The photon absorption was studied for both dyes using the six-flux absorption scattering model (SFM) for estimating the LVRPA (local volumetric rate of photon absorption). This was done by modifying the apparent optical thickness equation. It was found that the presence of dye in the photocatalytic systems considerably increases the LVRPA. The rate coefficients for the degradation of pharmaceutical compounds in the presence of the organic dyes were also obtained.


Assuntos
Acetaminofen/isolamento & purificação , Corantes/química , Diclofenaco/isolamento & purificação , Fotólise , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Catálise , Amarelo de Eosina-(YS)/química , Luz , Rodaminas/química
9.
MethodsX ; 5: 915-923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151351

RESUMO

Recently, layered double hydroxides (LDHs) have attracted much consideration due to their versatility and easily manipulating properties and their potential applications such as anion exchangers, support of catalysts, flame retardants, biomedical drug delivery. A novel method for the in-situ preparation in situ of LDHs, using electrocoagulation (EC) processes was developed, the EC process was performed under two different conditions, at 5 mA m-2, changing polarity of the electrodes to find out the composition that leads to LDHs generation. The final product was characterized using XRD, BET and FTIR techniques. This method presented the following advantages: (1) Simultaneously LDHs synthesis and wastewater treatment by ion removal; (2) Polarity control allows to manipulate the M2+/M3+ molar ratio, LDHs properties and its potential applications; (3) The method spent less time to carry out the synthesis and; (4) it did not need complicated solid-liquid separation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA