Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(1): 013001, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419565

RESUMO

We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

2.
Phys Rev Lett ; 115(24): 245301, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705638

RESUMO

We report on the experimental observation of scaling in the time evolution following a sudden quench into the vicinity of a quantum critical point. The experimental system, a two-component Bose gas with coherent exchange between the constituents, allows for the necessary high level of control of parameters as well as the access to time-resolved spatial correlation functions. The theoretical analysis reveals that when quenching the system close to the critical point, the energy introduced by the quench leads to a short-time evolution exhibiting crossover reminiscent of the finite-temperature critical properties in the system's universality class. Observing the time evolution after a quench represents a paradigm shift in accessing and probing experimentally universal properties close to a quantum critical point and allows in a new way benchmarking of quantum many-body theory with experiments.


Assuntos
Modelos Teóricos , Teoria Quântica , Gases/química , Rubídio/química
3.
Phys Rev Lett ; 113(10): 103004, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238356

RESUMO

A major challenge in quantum metrology is the generation of entangled states with a macroscopic atom number. Here, we demonstrate experimentally that atomic squeezing generated via nonlinear dynamics in Bose-Einstein condensates, combined with suitable trap geometries, allows scaling to large ensemble sizes. We achieve a suppression of fluctuations by 5.3(5) dB for 12,300 particles, from which we infer that similar squeezing can be obtained for more than 10(7) atoms. With this resource, we demonstrate quantum-enhanced magnetometry by swapping the squeezed state to magnetically sensitive hyperfine levels that have negligible nonlinearity. We find a quantum-enhanced single-shot sensitivity of 310(47) pT for static magnetic fields in a probe volume as small as 90 µm3.

4.
Phys Rev Lett ; 111(25): 253001, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24483741

RESUMO

Many cold atom experiments rely on precise atom number detection, especially in the context of quantum-enhanced metrology where effects at the single particle level are important. Here, we investigate the limits of atom number counting via resonant fluorescence detection for mesoscopic samples of trapped atoms. We characterize the precision of these fluorescence measurements beginning from the single-atom level up to more than one thousand. By investigating the primary noise sources, we obtain single-atom resolution for atom numbers as high as 1200. This capability is an essential prerequisite for future experiments with highly entangled states of mesoscopic atomic ensembles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA