Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 940: 173642, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38821283

RESUMO

The efficiency in Cr (III) and Cr (VI) removal by Floating Treatment Wetlands (FTWs) vegetated with Canna indica, metal accumulation in sediment and plants were determined. Plant tolerance and its morphological response to metal were studied. Treatments were 5 and 10 mg L-1 of Cr(III) (5Cr(III) and 10Cr(III), respectively), and 5 and 10 mg L-1 of Cr(VI) (5Cr(VI) and 10Cr(VI), respectively), with and without FTWs, and a biological control (BC: with FTW without Cr addition). After 35 days, Total-Cr removals in treatments with FTW were 99.6 %, 96.9 %, 96.9 % and 81.7 % in 5Cr(III), 10Cr(III), 5Cr(VI) and 10Cr(VI), respectively. In Cr (III) treatments, the sediment from the reactors without FTW accumulated significantly more metal than the sediments with FTW, while the opposite occurred in the Cr(VI) treatments. Chromium in sediment was accumulated mainly bound to organic matter in all treatments (38-64 %). Roots of C. indica were the main Cr accumulator organ in all treatments (76-88 %). In 10Cr(VI) treatment, Cr was translocated to aerial parts resulting in a decrease in plant biomass and Chlorophyll a concentration. C. indica modified its internal and external root morphology as a mechanism to tolerate Cr toxicity, without affecting removal efficiencies. FTWs vegetated with C. indica were efficient in the remediation of water bodies contaminated with Cr. In addition, these systems have an aesthetic value because they use an ornamental species.


Assuntos
Biodegradação Ambiental , Cromo , Poluentes Químicos da Água , Áreas Alagadas , Cromo/análise , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
2.
Int J Phytoremediation ; 25(13): 1819-1829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035876

RESUMO

Floating treatment wetlands (FTWs) are a cost-effective ecological engineering tool for the restoration of polluted water bodies. The aims of this work were to evaluate the removal of Cr(III) and Cr(VI) by FTWs using Typha domingensis, and to assess Cr accumulation and distribution in plant tissues and sediment. Treatments were 5 and 10 mg L-1 of Cr(III), and 5 and 10 mg L-1 of Cr(VI), with and without FTWs, and biological control (BC) with FTW without Cr addition. Both Cr species were efficiently removed from water in all treatments (Cr removal > 80%). Cr concentration in sediments of treatment without FTWs was significantly higher than in sediments of treatments with FTWs, indicating that T. domingensis was directly involved in Cr removal. In sediment, Cr was mainly bound to the organic matter in all treatments with a low risk of future release under FTW conditions. T. domingensis demonstrated tolerance to both Cr species at 5 and 10 mg L-1 with Cr accumulated mainly in the roots in all treatments. The use of FTWs planted with T. domingensis is a suitable tool to remediate water bodies contaminated with Cr.


This study evaluates the removal efficiency of Cr(III) and Cr(V) in Floating Treatment Wetlands planted with Typha domingensis in greenhouse experiments. Cr accumulation and distribution in plant tissues and different sediment fractions were also assessed.


Assuntos
Typhaceae , Poluentes Químicos da Água , Typhaceae/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Plantas/metabolismo , Água
3.
Environ Sci Pollut Res Int ; 30(17): 50582-50592, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800086

RESUMO

The aims of this work were to evaluate the effects of P and N on the tolerance and root morphometry of Typha domingensis plants, and their implication in removal efficiency in floating treatment wetlands (FTWs). Pilot-scale plastic reactors containing plants, sediment, and tap water were arranged. FTWs consist of a plastic net, and buoyancy was provided by a PVC frame. After plant acclimation, 38 L of the synthetic effluent containing 10 mg L-1 N + 2 mg L-1 P was added to the reactors as follows: reactor A (with FTWs), reactor B (without FTWs), reactor BC (biological controls), and reactor CC (chemical control). Reactors were arranged in triplicate. During the experiment, three effluent dumps were made. The removals of SRP and TP were significantly higher in reactor A than in reactor B. N-NH4+ removal was not significantly different between reactors A and B, while N-NO3- removal from water was higher in reactor A than in reactor B. At the end of the experiment, chlorophyll concentration and aerial and submerged (roots and rhizomes) biomass increased significantly in reactor A. TP concentrations were not different between rhizomes and leaves, while the lowest concentrations were observed in roots. The TKN in tissues was significantly higher in roots and rhizomes than in aerial parts. In plants exposed to the experimental solution, the internal and external root morphology changed. The use of FTWs is a promising strategy for the sustainable treatment of nutrient polluted water bodies.


Assuntos
Typhaceae , Poluentes Químicos da Água , Fósforo/farmacologia , Áreas Alagadas , Água , Nitrogênio/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Plantas
4.
Sci Total Environ ; 745: 141100, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758752

RESUMO

The aims of this study were to select the most suitable macrophyte species and substrate to be used in horizontal subsurface flow (HSSF) wetlands for the treatment of a local cheese factory wastewater, and to quantify the influence of plant species and substrates by applying of a simple first-order kinetic model. Microcosms-scale HSSF wetlands were planted with Canna glauca or Typha domingensis. LECA and river stones were used as substrates. Both studied macrophytes showed a high tolerance to the treated wastewater. HSSF wetlands were efficient for the treatment of diluted cheese production wastewater. COD, TP, NH4+-N and TN showed high removal efficiencies in all the HSSF wetlands. HSSF wetlands planted with C. glauca showed the best performance for removal of NH4+-N. The highest SRP removal was obtained in HSSF wetlands planted C. glauca with LECA as substrate. A simple first-order kinetics model was applied. The fitted parameters of the modified first-order model k-C* allowed to demonstrate the effect of the plants in the treatment of the effluent. HSSF wetlands planted with C. glauca using river stones were the systems that showed the fastest TIN removal. According to the obtained results, it is proposed to use C. glauca and river stones as substrate in a HSSF wetland for the treatment of this wastewater. The present study provides useful data to design a wetland at a larger scale.


Assuntos
Queijo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Áreas Alagadas
5.
Environ Sci Pollut Res Int ; 25(18): 18130-18137, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691750

RESUMO

The aim of this work was to study Cr, Ni, Zn, and P bioaccumulation in different compartments of Typha domingensis plants and sediment in a free-water surface constructed wetland for the treatment of a metallurgical effluent for 5 years. Removal efficiencies were satisfactory. To increase metal tolerance, its transport from belowground to aboveground tissues is reduced, being metal concentrations in the roots and rhizomes significantly higher than in the aerial and submerged parts of leaves. Regarding belowground tissues, metals were retained in the roots, while P was mainly accumulated in rhizomes. Bioaccumulation factors (BAFs) of Cr and Ni showed values near 1, and BAF of Zn and P were above 1 in several samplings, indicating bioaccumulation in the roots. Translocation factors (TFs) of Cr, Ni, and Zn were below 1, showing a scarce translocation from the roots to the aerial parts of the leaves, while the TF of P were above 1 in many samplings, indicating that this element is necessary for plant metabolism. The study of plant tissues where contaminants are accumulated allows gaining insight into the constructed wetland operation. The high translocation of P in T. domingensis makes this species suitable for its phytoextraction, while the low metal translocation makes T. domingensis suitable for phytostabilization.


Assuntos
Cromo/análise , Níquel/análise , Fósforo/análise , Typhaceae/metabolismo , Áreas Alagadas , Zinco/análise , Argentina , Biodegradação Ambiental , Cromo/metabolismo , Metalurgia , Níquel/metabolismo , Fósforo/metabolismo , Typhaceae/crescimento & desenvolvimento , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...