Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 291(3): G500-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16899714

RESUMO

Primary cilia are distinct organelles expressed by many vertebrate cells, including cholangiocytes; however, their functions remain obscure. To begin to explore the physiological role of these organelles in the liver, we described the morphology and structure of cholangiocyte cilia and developed new approaches for their isolation. Primary cilia were present only in bile ducts and were not observed in hepatocytes or in hepatic arterial or portal venous endothelial cells. Each cholangiocyte possesses a single cilium that extends from the apical membrane into the bile duct lumen. In addition, the length of the cilia was proportional to the bile duct diameter. We reproducibly isolated enriched fractions of cilia from normal rat and mouse cholangiocytes by two different approaches as assessed by scanning electron, transmission electron, and confocal microscopy. The purity of isolated ciliary fractions was further analyzed by Western blot analysis using acetylated tubulin as a ciliary marker and P2Y(2) as a nonciliary cell membrane marker. These novel techniques produced enriched ciliary fractions of sufficient purity and quantity for light and electron microscopy and for biochemical analyses. They will permit further assessment of the role of primary cilia in normal and pathological conditions.


Assuntos
Ductos Biliares/ultraestrutura , Cílios/ultraestrutura , Hepatócitos/ultraestrutura , Fígado/ultraestrutura , Animais , Células Cultivadas , Camundongos , Ratos
2.
Lab Invest ; 86(9): 940-50, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16783394

RESUMO

In the PCK rat, a rodent model of Autosomal Recessive Polycystic Kidney Disease (ARPKD), a spontaneous splicing mutation of Pkhd1 initiates hepatic cyst development. Cystic cholangiocytes possess short and malformed cilia that do not express fibrocystin, the Pkhd1 protein. During the disease course, cysts continue to grow; however, the mechanisms underlying cyst progression are unclear due in part to the lack of suitable cell lines to study cystogenesis. Here, we describe the development of a PCK-derived cholangiocyte cell line (PCK-CCL). Normal rat cholangiocytes (NRCs) were used as a control. The PCK-CCL maintained a cholangiocyte phenotype as assessed by the expression of the CK-19, CK-7 and GGT. PCK-CCL grown on collagen formed a polarized monolayer with well-developed junctional complexes, and distinct apical and basolateral membranes. Compared to NRCs, cilia in the PCK-CCL were short and malformed and did not express fibrocystin. The PCK-CCL exhibited a higher rate of proliferation (P<0.05) with a doubling time approximately half that of NRCs. By RT-PCR analysis of exons 33-37, an approximately 800 bp product of Pkhd1 was amplified in NRCs. In contrast and as expected, in the PCK-CCL, the Pkhd1 amplicon was smaller ( approximately 630 bp) reflecting the IVS35-2A --> T mutation. PCK-CCL and NRCs seeded in 3-D cultures formed cystic structures; however, the PCK cysts expanded progressively up to day 21 while cysts formed by NRCs remained the same size after day 9. In summary, we have developed a cholangiocyte cell line from the PCK rat that retains properties of the cholangiocytes lining hepatic cysts in vivo. The cells have been grown continuously for approximately 18 month and 45 passages without crisis or senescence. The morphology and growth characteristics of the PCK-CCL are consistent with those seen in vivo in the PCK rat, suggesting that this cell line will be useful in dissecting the mechanisms of hepatic cyst formation.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Linhagem Celular , Modelos Animais de Doenças , Rim Policístico Autossômico Recessivo/patologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Cílios/ultraestrutura , Masculino , Ratos , Receptores de Superfície Celular/metabolismo
3.
Am J Physiol Cell Physiol ; 284(5): C1205-14, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12676656

RESUMO

With an in vitro model using enclosed intrahepatic bile duct units (IBDUs) isolated from wild-type and somatostatin receptor (SSTR) subtype 2 knockout mice, we tested the effects of somatostatin, secretin, and a selective SSTR2 agonist (L-779976) on fluid movement across the bile duct epithelial cell layer. By RT-PCR, four of five known subtypes of SSTRs (SSTR1, SSTR2A/2B, SSTR3, and SSTR4, but not SSTR5) were detected in cholangiocytes in wild-type mice. In contrast, SSTR2A/2B were completely depleted in the SSTR2 knockout mice whereas SSTR1, SSTR3 and SSTR4 were expressed in these cholangiocytes. Somatostatin induced a decrease of luminal area of IBDUs isolated from wild-type mice, reflecting net fluid absorption; L-779976 also induced a comparable decrease of luminal area. No significant decrease of luminal area by either somatostatin or L-779976 was observed in IBDUs from SSTR2 knockout mice. Secretin, a choleretic hormone, induced a significant increase of luminal area of IBDUs of wild-type mice, reflecting net fluid secretion; somatostatin and L-779976 inhibited (P < 0.01) secretin-induced fluid secretion. The inhibitory effect of both somatostatin and L-779976 on secretin-induced IBDU secretion was absent in IBDUs of SSTR2 knockout mice. Somatostatin induced an increase of intracellular cGMP and inhibited secretin-stimulated cAMP synthesis in cholangiocytes; depletion of SSTR2 blocked these effects of somatostatin. These data suggest that somatostatin regulates ductal bile formation in mice not only by inhibition of ductal fluid secretion but also by stimulation of ductal fluid absorption via interacting with SSTR2 on cholangiocytes, a process involving the intracellular cAMP/cGMP second messengers.


Assuntos
Ductos Biliares Intra-Hepáticos/metabolismo , Bile/metabolismo , Receptores de Somatostatina/fisiologia , Somatostatina/fisiologia , Absorção , Amidas/farmacologia , Animais , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Líquidos Corporais/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Indóis/farmacologia , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Receptores de Somatostatina/genética , Secretina/farmacologia , Somatostatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA