Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 20(7): 643-656, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29793116

RESUMO

BACKGROUND: Widespread infiltration of tumor cells into surrounding brain parenchyma is a hallmark of malignant gliomas, but little data exist on the overall invasion pattern of tumor cells throughout the brain. METHODS: We have studied the invasive phenotype of malignant gliomas in two invasive mouse models and patients. Tumor invasion patterns were characterized in a patient-derived xenograft mouse model using brain-wide histological analysis and magnetic resonance (MR) imaging. Findings were histologically validated in a cdkn2a-/- PDGF-ß lentivirus-induced mouse glioblastoma model. Clinical verification of the results was obtained by analysis of MR images of malignant gliomas. RESULTS: Histological analysis using human-specific cellular markers revealed invasive tumors with a non-radial invasion pattern. Tumors cells accumulated in structures located far from the transplant site, such as the optic white matter and pons, whereas certain adjacent regions were spared. As such, the hippocampus was remarkably free of infiltrating tumor cells despite the extensive invasion of surrounding regions. Similarly, MR images of xenografted mouse brains displayed tumors with bihemispheric pathology, while the hippocampi appeared relatively normal. In patients, most malignant temporal lobe gliomas were located lateral to the collateral sulcus. Despite widespread pathological fluid-attenuated inversion recovery signal in the temporal lobe, 74% of the "lateral tumors" did not show signs of involvement of the amygdalo-hippocampal complex. CONCLUSIONS: Our data provide clear evidence for a compartmental pattern of invasive growth in malignant gliomas. The observed invasion patterns suggest the presence of preferred migratory paths, as well as intra-parenchymal boundaries that may be difficult for glioma cells to traverse supporting the notion of compartmental growth. In both mice and human patients, the hippocampus appears to be a brain region that is less prone to tumor invasion.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Hipocampo/patologia , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/diagnóstico por imagem , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Xenoenxertos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Microscopia de Fluorescência , Invasividade Neoplásica
2.
Exp Cell Res ; 349(2): 199-213, 2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515001

RESUMO

The biology of glioblastoma invasion and its mechanisms are poorly understood. We demonstrate using time-lapse microscopy that grafting of glioblastoma (GBM) tumorspheres into rodent brain slices results in experimental ex vivo tumors with invasive properties that recapitulate the invasion observed after orthotopic transplantation into the rodent brain. The migratory movements and mitotic patterns were clearly modified by signals extrinsic to the invading cells. The cells migrated away from the tumorspheres, and removal of the spheres reduced the directed invasive movement. The cell cultures contained different populations of invasive cells that had distinct morphology and invasive behavior patterns. Grafts of the most invasive GBM culture contained 91±8% cells with an invasive phenotype, characterized by small soma with a distinct leading process. Conversely, the majority of cells in less invasive GBM grafts were phenotypically heterogeneous: only 6.3±4.1% of the cells had the invasive phenotype. Grafts of highly and moderately invasive cultures had different proportions of cells that advanced into the brain slice parenchyma during the observation period: 89.2±2.2% and 23.1±6.8%, respectively. In grafts with moderately invasive properties, most of the cells (76.8±6.8%) invading the surrounding brain tissue returned to the tumor bulk or stopped centrifugal migration. Our data suggest that the invasion of individual GBM tumors can be conditioned by the prevalence of a cell fraction with particular invasive morphology and by signaling between the tumor core and invasive cells. These findings can be important for the development of new therapeutic strategies that target the invasive GBM cells.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Invasividade Neoplásica/patologia , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Invasividade Neoplásica/genética , Fenótipo , Transdução de Sinais/genética , Fatores de Tempo
3.
Mol Cancer ; 14: 160, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292663

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary brain malignancy and confers a dismal prognosis. GBMs harbor glioblastoma-initiating cells (GICs) that drive tumorigenesis and contribute to therapeutic resistance and tumor recurrence. Consequently, there is a strong rationale to target this cell population in order to develop new molecular therapies against GBM. Accumulating evidence indicates that Nα-terminal acetyltransferases (NATs), that are dysregulated in numerous human cancers, can serve as therapeutic targets. METHODS: Microarrays were used to study the expression of several NATs including NAT12/NAA30 in clinical samples and stem cell cultures. The expression of NAT12/NAA30 was analyzed using qPCR, immunolabeling and western blot. We conducted shRNA-mediated knockdown of NAT12/NAA30 gene in GICs and studied the effects on cell viability, sphere-formation and hypoxia sensitivity. Intracranial transplantation to SCID mice enabled us to investigate the effects of NAT12/NAA30 depletion in vivo. Using microarrays we identified genes and biochemical pathways whose expression was altered upon NAT12/NAA30 down-regulation. RESULTS: While decreased expression of the distal 3'UTR of NAT12/NAA30 was generally observed in GICs and GBMs, this gene was strongly up-regulated at the protein level in GBM and GICs. The increased protein levels were not caused by increased levels of the steady state mRNA but rather by other mechanisms. Also, shorter 3'UTR of NAT12/NAA30 correlated with poor survival in glioma patients. As well, we observed previously not described nuclear localization of this typically cytoplasmic protein. When compared to non-silencing controls, cells featuring NAT12/NAA30 knockdown exhibited reduced cell viability, sphere-forming ability, and mitochondrial hypoxia tolerance. Intracranial transplantation showed that knockdown of NAT12/NAA30 resulted in prolonged animal survival. Microarray analysis of the knockdown cultures showed reduced levels of HIF1α and altered expression of several other genes involved in the hypoxia response. Furthermore, NAT12/NAA30 knockdown correlated with expressional dysregulation of genes involved in the p53 pathway, ribosomal assembly and cell proliferation. Western blot analysis revealed reduction of HIF1α, phospho-MTOR(Ser2448) and higher levels of p53 and GFAP in these cultures. CONCLUSION: NAT12/NAA30 plays an important role in growth and survival of GICs possibly by regulating hypoxia response (HIF1α), levels of p-MTOR (Ser2448) and the p53 pathway.


Assuntos
Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Acetiltransferase N-Terminal C/biossíntese , Proteínas de Neoplasias/biossíntese , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Masculino , Camundongos , Acetiltransferase N-Terminal C/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Prognóstico , RNA Mensageiro/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 6(28): 26192-215, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26295306

RESUMO

Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Proteômica , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genótipo , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Terapia de Alvo Molecular , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Prognóstico , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais , Análise de Sobrevida , Fatores de Tempo , Células Tumorais Cultivadas
5.
Mol Cancer ; 14: 121, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081429

RESUMO

BACKGROUND: Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs. METHODS: PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures. RESULTS: Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 µM and 10 µM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs. CONCLUSION: Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.


Assuntos
Glioblastoma/metabolismo , Glioblastoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Indolizinas/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...