Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(2): 191-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36942273

RESUMO

Introduction: Ailanthus altissima is an indigenous plant known for various remedial properties. The present study aimed to evaluate the neuroprotective potential of methanolic extract Ailanthus altissima (AA) bark as current scientific trend is searching plant for neurodegenerative diseases, worldwide. Methodology: In in-vitro experiments, the AA was analyzed for phenols, flavonoids, antioxidative and cholinesterase inhibitory properties with subsequent detailed characterization for secondary metabolites. The in-vivo neurological effects were evaluated in rats through behavioral assessment for anxiety and memory after chronic administration (28 days) of 50-200 mg/kg of AA. At the end of behavior studies, isolated brains were biochemically tested to determine antioxidant enzyme activity. Results: AA was found rich in phenols/flavonoids and active in radical scavenging with the presence of 13 secondary metabolites in UHPLC-MS analysis. The AA yielded anxiolytic effects dose-dependently in the open field, light/dark and elevated-plus maze tests as animals significantly (P < 0.05 vs control group) preferred open arena, illuminated zone and exposed arms of maze. Similarly, the animals treated with AA showed significant (P < 0.05 vs amnesic group) increase in spontaneous alternation, discrimination index in y-maze, novel object recognition tests. Further, AA.Cr treated rats showed noticeably shorter escape latencies in Morris water maze tests.In biochemical analysis, the dissected brains AA treated rats showed reduced levels of AChE and malondialdehyde with increased levels of first-line antioxidant enzymes i.e. glutathione peroxidase and superoxide dismutase. These observed biological effects might be attributed to phenols and flavonoids constituents owned by AA. -The in-silico studies showed thatconessine and lophirone J phytocompounds have good blood-brain barrier permeability and interaction with AChE. Conclusion: The outcomes of this study validate that bark of Ailanthus altissima might work as a source of bioactive phytochemicals of neuroprotective potential.

2.
Saudi J Biol Sci ; 28(8): 4384-4398, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354423

RESUMO

In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...