Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 67(3): 92-99, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33642451

RESUMO

Musty odor production by actinomycetes is usually related to the presence of geosmin and 2-methylisoborneol (2-MIB), which are synthesized by enzymes encoded by the geoA and tpc genes, respectively. Streptomyces spp. strain S10, which was isolated from a water reservoir in Malaysia, has the ability to produce geosmin when cultivated in a basal salt (BS) solid medium, but no 2-MIB production occurred during growth in BS medium. Strain S10 could produce higher levels of geosmin when the phosphate concentration was limited to 0.05 mg/L, with a yield of 17.53 ± 3.12 ✕ 105 ng/L, compared with growth in BS medium. Interestingly, 2-MIB production was suddenly detected when the nitrate concentration was limited to 1.0 mg/L, with a yield of 1.4 ± 0.11 ✕ 105 ng/L. Therefore, it was concluded that phosphate- and nitrate-limiting conditions could induce the initial production of geosmin and 2-MIB by strain S10. Furthermore, a positive amplicon of geoA was detected in strain S10, but no tpc amplicon was detected by PCR analysis. Draft genome sequence analysis showed that one open reading frame (ORF) contained a conserved motif of geosmin synthase with 95% identity with geoA in Streptomyces coelicolor A3 (2). In the case of the tpc genes, it was found that one ORF showed 23% identity to the known tpc gene in S. coelicolor A3(2), but strain S10 lacked one motif in the N-terminus.


Assuntos
Nutrientes/deficiência , Odorantes , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Canfanos/metabolismo , Meios de Cultura/química , Genoma Bacteriano/genética , Malásia , Naftóis/metabolismo , Nitratos/análise , Odorantes/análise , Fosfatos/análise , Streptomyces/isolamento & purificação , Microbiologia da Água
2.
Water Sci Technol ; 80(9): 1787-1795, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039910

RESUMO

Staphylococcus sp. as Gram-positive and Escherichia coli as Gram-negative are bacterial pathogens and can cause primary bloodstream infections and food poisoning. Coagulation, flocculation, and sedimentation processes could be a reliable treatment for bacterial removal because suspended, colloidal, and soluble particles can be removed. Chemical coagulants, such as alum, are commonly used. However, these chemical coagulants are not environmentally friendly. This present study evaluated the effectiveness of coagulation, flocculation, and sedimentation processes for removing Staphylococcus sp. and E. coli using diatomite with standard jar test equipment at different pH values. Staphylococcus sp. demonstrated 85.61% and 77.23% significant removal in diatomite and alum, respectively, at pH 5. At pH 7, the removal efficiency decreased to 79.41% and 64.13% for Staphylococcus sp. and E. coli, respectively. At pH 9, there was a decrease in Staphylococcus sp. after adding diatomite or alum compared with that of E. coli. The different removal efficiencies of the Gram-positive and Gram-negative bacteria could be owing to the membrane composition and different structures in the bacteria. This study indicates that diatomite has higher efficiency in removing bacteria at pH 5 and can be considered as a potential coagulant to replace alum for removing bacteria by the coagulation process.


Assuntos
Antibacterianos , Purificação da Água , Compostos de Alúmen , Escherichia coli , Floculação , Bactérias Gram-Negativas , Bactérias Gram-Positivas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA