Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7594-7601, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38686444

RESUMO

Multivariate statistical tools and machine learning (ML) techniques can deconvolute hyperspectral data and control the disparity between the number of samples and features in materials science. Nevertheless, the importance of generating sufficient high-quality sample replicates in training data cannot be overlooked, as it fundamentally affects the performance of ML models. Here, we present a quantitative analysis of time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of a simple microarray system of two food dyes using partial least-squares (PLS, linear) and random forest (RF, nonlinear) algorithms. This microarray was generated by a high-throughput sample preparation and analysis workflow for fast and efficient acquisition of quality and reproducible spectra via ToF-SIMS. We drew insights from the bias-variance trade-off, investigated the performances of PLS and RF regression models as a function of training data size, and inferred the amount of data needed to construct accurate and reliable regression models. In addition, we found that the spectral concatenation of positive and negative ToF-SIMS spectra improved the model performances. This study provides an empirical basis for future design of high-throughput microarrays and multicomponent systems, for the purpose of analysis with ToF-SIMS and ML.

2.
Angew Chem Int Ed Engl ; : e202320154, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400586

RESUMO

Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.

3.
Small Methods ; : e2301230, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204217

RESUMO

Supervised and unsupervised machine learning algorithms are routinely applied to time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data and, more broadly, to mass spectrometry imaging (MSI). These algorithms have accelerated large-scale, single-pixel analysis, classification, and regression. However, there is relatively little research on methods suited for so-called weakly supervised problems, where ground-truth class labels exist at the image level, but not at the individual pixel level. Unsupervised learning methods are usually applied to these problems. However, these methods cannot make use of available labels. Here a novel method specifically designed for weakly supervised MSI data is presented. A dual-stream multiple instance learning (MIL) approach is adapted from computational pathology that reveals the spatial-spectral characteristics distinguishing different classes of MSI images. The method uses an information entropy-regularized attention mechanism to identify characteristic class pixels that are then used to extract characteristic mass spectra. This work provides a proof-of-concept exemplification using printed ink samples imaged by ToF-SIMS. A second application-oriented study is also presented, focusing on the analysis of a mixed powder sample type. Results demonstrate the potential of the MIL method for broader application in MSI, with implications for understanding subtle spatial-spectral characteristics in various applications and contexts.

4.
Small ; 20(6): e2305052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798622

RESUMO

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
5.
Anal Chem ; 95(47): 17384-17391, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963228

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is used across many fields for the atomic and molecular characterization of surfaces, with both high sensitivity and high spatial resolution. When large analysis areas are required, standard ToF-SIMS instruments allow for the acquisition of adjoining tiles, which are acquired by rastering the primary ion beam. For such large area scans, tiling artifacts are a ubiquitous challenge, manifesting as intensity gradients across each tile and/or sudden changes in intensity between tiles. Such artifacts are thought to be related to a combination of sample charging, local detector sensitivity issues, and misalignment of the primary ion gun, among other instrumental factors. In this work, we investigated six different computational tiling artifact removal methods: tensor decomposition, multiplicative linear correction, linear discriminant analysis, seamless stitching, simple averaging, and simple interpolating. To ensure robustness in the study, we applied these methods to three hyperspectral ToF-SIMS data sets and one OrbiTrapSIMS data set. Our study includes a carefully designed statistical analysis and a quantitative survey that subjectively assessed the quality of the various methods employed. Our results demonstrate that while certain methods are useful and preferred more often, no one particular approach can be considered universally acceptable and that the effectiveness of the artifact removal method is strongly dependent on the particulars of the data set analyzed. As examples, the multiplicative linear correction and seamless stitching methods tended to score more highly on the subjective survey; however, for some data sets, this led to the introduction of new artifacts. In contrast, simple averaging and interpolation methods scored subjectively poorly on the biological data set, but more highly on the microarray data sets. We discuss and explore these findings in depth and present general recommendations given our findings to conclude the work.

6.
Anal Chem ; 95(20): 7968-7976, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172328

RESUMO

The self-organizing map with relational perspective mapping (SOM-RPM) is an unsupervised machine learning method that can be used to visualize and interpret high-dimensional hyperspectral data. We have previously used SOM-RPM for the analysis of time-of-flight secondary ion mass spectrometry (ToF-SIMS) hyperspectral images and three-dimensional (3D) depth profiles. This provides insightful visualization of features and trends of 3D depth profile data, using a slice-by-slice view, which can be useful for highlighting structural flaws including molecular characteristics and transport of contaminants to a buried interface and characterization of spectra. Here, we apply SOM-RPM to stitched ToF-SIMS data sets, whereby the stitched data are used to train the same model to provide a direct comparison in both 2D and 3D. We conduct an analysis of spin-coated polyaniline (PANI) films on indium tin oxide-coated glass slides that were subjected to heat treatment under atmospheric conditions to model PANI as a conformal aerospace industry coating. Replicates were shown to be precisely equivalent, both spatially and by composition, indicating a clear threshold for annealing of the film. Quantitative assessment was performed on the chemical breakdown trends accompanying annealing based on peak ratios, while spectral analysis alone shows only very subtle differences which are difficult to evaluate quantitatively. The SOM-RPM method considers data sets in their totality and highlights subtle differences between samples often simply differences in peak intensity ratios.

7.
Adv Mater ; : e2208364, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36440539

RESUMO

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. 315 different polymer surfaces are screened to identify candidates which actively drive fibroblasts toward either pro- or antiproliferative functional phenotypes. Fibroblast-instructive chemistries are identified, which are synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles are able to successfully promote neovascularization, granulation tissue formation, and wound closure after a single application to the wound bed. These active novel bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds.

8.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364631

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.

9.
Anal Chem ; 94(22): 7804-7813, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35616489

RESUMO

Feature extraction algorithms are an important class of unsupervised methods used to reduce data dimensionality. They have been applied extensively for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging─commonly, matrix factorization (MF) techniques such as principal component analysis have been used. A limitation of MF is the assumption of linearity, which is generally not accurate for ToF-SIMS data. Recently, nonlinear autoencoders have been shown to outperform MF techniques for ToF-SIMS image feature extraction. However, another limitation of most feature extraction methods (including autoencoders) that is particularly important for hyperspectral data is that they do not consider spatial information. To address this limitation, we describe the application of the convolutional autoencoder (CNNAE) to hyperspectral ToF-SIMS imaging data. The CNNAE is an artificial neural network developed specifically for hyperspectral data that uses convolutional layers for image encoding, thereby explicitly incorporating pixel neighborhood information. We compared the performance of the CNNAE with other common feature extraction algorithms for two biological ToF-SIMS imaging data sets. We investigated the extracted features and used the dimensionality-reduced data to train additional ML algorithms. By converting two-dimensional convolutional layers to three-dimensional (3D), we also showed how the CNNAE can be extended to 3D ToF-SIMS images. In general, the CNNAE produced features with significantly higher contrast and autocorrelation than other techniques. Furthermore, histologically recognizable features in the data were more accurately represented. The extension of the CNNAE to 3D data also provided an important proof of principle for the analysis of more complex 3D data sets.


Assuntos
Redes Neurais de Computação , Espectrometria de Massa de Íon Secundário , Algoritmos , Análise de Componente Principal , Espectrometria de Massa de Íon Secundário/métodos
10.
Biointerphases ; 17(2): 020802, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35345884

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging offers a powerful, label-free method for exploring organic, bioorganic, and biological systems. The technique is capable of very high spatial resolution, while also producing an enormous amount of information about the chemical and molecular composition of a surface. However, this information is inherently complex, making interpretation and analysis of the vast amount of data produced by a single ToF-SIMS experiment a considerable challenge. Much research over the past few decades has focused on the application and development of multivariate analysis (MVA) and machine learning (ML) techniques that find meaningful patterns and relationships in these datasets. Here, we review the unsupervised algorithms-that is, algorithms that do not require ground truth labels-that have been applied to ToF-SIMS images, as well as other algorithms and approaches that have been used in the broader family of mass spectrometry imaging (MSI) techniques. We first give a nontechnical overview of several commonly used classes of unsupervised algorithms, such as matrix factorization, clustering, and nonlinear dimensionality reduction. We then review the application of unsupervised algorithms to various organic, bioorganic, and biological systems including cells and tissues, organic films, residues and coatings, and spatially structured systems such as polymer microarrays. We then cover several novel algorithms employed for other MSI techniques that have received little attention from ToF-SIMS imaging researchers. We conclude with a brief outline of potential future directions for the application of MVA and ML algorithms to ToF-SIMS images.


Assuntos
Espectrometria de Massa de Íon Secundário , Aprendizado de Máquina não Supervisionado , Algoritmos , Aprendizado de Máquina , Análise Multivariada , Espectrometria de Massa de Íon Secundário/métodos
11.
Nat Commun ; 13(1): 343, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039508

RESUMO

A depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative 'superbugs' has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone. Confocal microscopy and neutron reflectometry suggest the superior polytherapy activity is achieved via a two-step process. Firstly, electrostatic interactions between polymyxin and lipid A initially destabilize the outer membrane. Subsequently, an influx of cubosomes results in further membrane disruption via a lipid exchange process. These findings demonstrate that nanoparticle-based polytherapy treatments may potentially serve as improved alternatives to the conventional use of drug-loaded lipid nanoparticles for the treatment of "superbugs".


Assuntos
Farmacorresistência Bacteriana Múltipla , Nanopartículas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Quimioterapia Combinada , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Testes de Sensibilidade Microbiana , Microscopia Confocal , Polimixina B/farmacologia
12.
ACS Appl Mater Interfaces ; 13(36): 43290-43300, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464079

RESUMO

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimensional, surface-active materials were successfully used to control the surface properties of particles by forming a unimolecular deep layer on the surface of the particles via microfluidic processing. This strategy deliberately utilizes the surfactant to both create the stable particles and deliver a desired cell-instructive behavior. Therefore, these specifically designed, highly functional surfactants are critical to promoting a desired cell response. This library contained surfactants constructed from 20 molecularly distinct (meth)acrylic monomers, which had been pre-identified by HT screening to exhibit specific, varied, and desirable bacterial biofilm inhibitory responses. The surfactant's self-assembly properties in water were assessed by developing a novel, fully automated, HT method to determine the critical aggregation concentration. These values were used as the input data to a computational-based evaluation of the key molecular descriptors that dictated aggregation behavior. Thus, this combination of HT techniques facilitated the rapid design, generation, and evaluation of further novel, highly functional, cell-instructive surfaces by application of designed surfactants possessing complex molecular architectures.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Bibliotecas de Moléculas Pequenas/química , Tensoativos/química , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Metacrilatos/síntese química , Micelas , Modelos Químicos , Transição de Fase , Polietilenoglicóis/síntese química , Polimerização , Bibliotecas de Moléculas Pequenas/síntese química , Tensoativos/síntese química
13.
Biointerphases ; 15(6): 061004, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198474

RESUMO

The advantages of applying multivariate analysis to mass spectrometry imaging (MSI) data have been thoroughly demonstrated in recent decades. The identification and visualization of complex relationships between pixels in a hyperspectral data set can provide unique insights into the underlying surface chemistry. It is now recognized that most MSI data contain nonlinear relationships, which has led to increased application of machine learning approaches. Previously, we exemplified the use of the self-organizing map (SOM), a type of artificial neural network, for analyzing time-of-flight secondary ion mass spectrometry (TOF-SIMS) hyperspectral images. Recently, we developed a novel methodology, SOM-relational perspective mapping (RPM), which incorporates the algorithm RPM to improve visualization of the SOM for 2D TOF-SIMS images. Here, we use SOM-RPM to characterize and interpret 3D TOF-SIMS depth profile data, voxel-by-voxel. An organic Irganox™ multilayer standard sample was depth profiled using TOF-SIMS, and SOM-RPM was used to create 3D similarity maps of the depth-profiled sample, in which the mass spectral similarity of individual voxels is modeled with color similarity. We used this similarity map to segment the data into spatial features, demonstrating that the unsupervised method meaningfully differentiated between Irganox-3114 and Irganox-1010 nanometer-thin multilayer films. The method also identified unique clusters at the surface associated with environmental exposure and sample degradation. Key fragment ions characteristic of each cluster were identified, tying clusters to their underlying chemistries. SOM-RPM has the demonstrable ability to reduce vast data sets to simple 3D visualizations that can be used for clustering data and visualizing the complex relationships within.


Assuntos
Aprendizado de Máquina , Espectrometria de Massa de Íon Secundário/métodos , Hidroxitolueno Butilado/química , Imageamento Hiperespectral
14.
Anal Chem ; 92(15): 10450-10459, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32614172

RESUMO

We present an optimization of the toroidal self-organizing map (SOM) algorithm for the accurate visualization of hyperspectral data. This represents a significant advancement on our previous work, in which we demonstrated the use of toroidal SOMs for the visualization of time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data. We have previously shown that the toroidal SOM can be used, unsupervised, to produce a multicolor similarity map of the analysis area, in which pixels with similar mass spectra are assigned a similar color. Here, we use an additional algorithm, relational perspective mapping (RPM), to produce more accurate visualizations of hyperspectral data. The SOM output is used as an input for the RPM algorithm, which is a nonlinear dimensionality reduction technique designed to produce a two-dimensional map of high-dimensional data. Using the topological information provided by the SOM, RPM provides complementary distance information. The result is a color scheme that more accurately reflects the local spectral distances between pixels in the data. We exemplify SOM-RPM using ToF-SIMS imaging data from a mouse tumor tissue section. The similarity maps produced are compared with those produced by two leading hyperspectral visualization techniques in the field of mass spectrometry imaging: t-distributed stochastic neighborhood embedding (t-SNE) and uniform manifold approximation and projection (UMAP). We evaluate the performance of each technique both qualitatively and quantitatively, investigating the correlations between distances in the models and distances in the data. SOM-RPM is demonstrably highly competitive with t-SNE and UMAP, according to our evaluations. Furthermore, the use of a neural network offers distinct advantages in data characterization, which we discuss. We also show how spectra extracted from regions of interest identified by SOM-RPM can be further analyzed using linear discriminant analysis for the validation and characterization of the surface chemistry.

15.
Front Microbiol ; 11: 920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477314

RESUMO

Staphylococcus capitis is an opportunistic pathogen often implicated in bloodstream infections in the neonatal intensive care unit (NICU). This is assisted by its ability to form biofilms on indwelling central venous catheters (CVC), which are highly resistant to antibiotics and the immune system. We sought to understand the fundamentals of biofilm formation by S. capitis in the NICU, using seventeen clinical isolates including the endemic NRCS-A clone and assessing nine commercial and two modified polystyrene surfaces. S. capitis clinical isolates from the NICU initiated biofilm formation only in response to hyperosmotic conditions, followed by a developmental progression driven by icaADBC expression to establish mature biofilms, with polysaccharide being their major extracellular polymer substance (EPS) matrix component. Physicochemical features of the biomaterial surface, and in particular the level of the element oxygen present on the surface, significantly influenced biofilm development of S. capitis. A lack of highly oxidized carbon species on the surface prevented the immobilization of S. capitis EPS and the formation of mature biofilms. This information provides guidance in regard to the preparation of hyperosmolar total parenteral nutrition and the engineering of CVC surfaces that can minimize the risk of catheter-related bloodstream infections caused by S. capitis in the NICU.

16.
Anal Chem ; 92(9): 6587-6597, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233419

RESUMO

Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput comparison of material physical and chemical properties-such as surface chemistry and properties like cell attachment or protein adsorption-in order to identify correlations that can progress materials development. A challenge for this approach is to accurately discriminate between highly similar polymer chemistries or identify heterogeneities within individual polymer spots. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers unique potential in this regard, capable of describing the chemistry associated with the outermost layer of a sample with high spatial resolution and chemical sensitivity. However, this comes at the cost of generating large scale, complex hyperspectral imaging data sets. We have demonstrated previously that machine learning is a powerful tool for interpreting ToF-SIMS images, describing a method for color-tagging the output of a self-organizing map (SOM). This reduces the entire hyperspectral data set to a single reconstructed color similarity map, in which the spectral similarity between pixels is represented by color similarity in the map. Here, we apply the same methodology to a ToF-SIMS image of a printed polymer microarray for the first time. We report complete, single-pixel molecular discrimination of the 70 unique homopolymer spots on the array while also identifying intraspot heterogeneities thought to be related to intermixing of the polymer and the pHEMA coating. In this way, we show that the SOM can identify layers of similarity and clusters in the data, both with respect to polymer backbone structures and their individual side groups. Finally, we relate the output of the SOM analysis with fluorescence data from polymer-protein adsorption studies, highlighting how polymer performance can be visualized within the context of the global topology of the data set.

17.
RSC Adv ; 10(55): 33608-33619, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515067

RESUMO

We have previously reported on a novel nanoparticle formulation that was effective at killing Staphylococcus aureus in vitro. Here, we report for the first time, the antibacterial effects of a lipidic nano-carrier containing rifampicin (NanoRIF) which can be used to successfully treat Methicillin-Resistant S. aureus (MRSA) infection at a reduced antibiotic dosage compared to the free drug in a skin wound model in mice. The formulation used contains the lipid monoolein, a cationic lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP) and the antibiotic. We have shown that rifampicin-loaded nanoparticles are more effective at treating infection in the skin wound model than the antibiotic alone. Cryo-TEM was used to capture for the first time, interactions of the formed nanoparticles with the cell wall of an individual bacterium. Our data strongly indicate enhanced binding of these charged nanoparticles with the negatively charged bacterial membrane. The efficacy we have now observed in vivo is of significant importance for the continued development of nanomedicine-based strategies to combat antibiotic resistant bacterial skin infections.

18.
Biointerphases ; 14(6): 061002, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747758

RESUMO

Surface interactions largely control how biomaterials interact with biology and how many other types of materials function in industrial applications. ToF-SIMS analysis is extremely useful for interrogating the surfaces of complex materials and shows great promise in analyzing biological samples. Previously, the authors demonstrated that segmentation (between 1 and 0.005 m/z mass bins) of the mass spectral axis can be used to differentiate between polymeric materials with both very similar and dissimilar molecular compositions. Here, the same approach is applied for the analysis of proteins on surfaces, focusing on the effect of binding and orientation of an antibody on the resulting ToF-SIMS spectrum. Due to the complex nature of the samples that contain combinations of only 20 amino acids differing in sequence, it is enormously challenging and prohibitively time-consuming to distinguish the minute variances presented in each dataset through manual analysis alone. Herein, the authors describe how to apply the newly developed rapid data analysis workflow to previously published ToF-SIMS data for complex biological materials, immobilized antibodies. This automated method reduced the analysis time by two orders of magnitudes while enhancing data quality and allows the removal of any user bias. The authors used mass segmentation at 0.005 m/z over a 1-300 mass range to generate 60 000 variables. In contrast to the previous manual binning approach, this method captures the entire mass range of the spectrum resulting in an information-rich dataset rather than specifically selected mass spectral peaks. This work constitutes an additional proof of concept that rapid and automated data analyses involving mass-segmented ToF-SIMS spectra can efficiently and robustly analyze a broader range of complex materials, ranging from generic polymers to complicated biological samples. This automated analysis method is also ideally positioned to provide data to train machine learning models of surface-property relationships that can greatly enhance the understanding of how the surface interacts with biology and provides more accurate and robust quantitative predictions of the biological properties of new materials.


Assuntos
Imunoglobulinas/química , Espectrometria de Massa de Íon Secundário/métodos , Anticorpos Imobilizados/química
19.
Anal Chem ; 91(21): 13855-13865, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31549810

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful surface characterization technique capable of producing high spatial resolution hyperspectral images, in which each pixel comprises an entire mass spectrum. Such images can provide insight into the chemical composition across a surface. However, issues arise due to the size and complexity of the data produced. Data are particularly complicated for biological samples, primarily due to overlapping spectra produced by similar components. The traditional approach of selecting individual ion peaks as representative of particular components is insufficient for such complex data sets. Multivariate analysis (MVA) can help to overcome this significant hurdle. We demonstrate that Kohonen self-organizing maps (SOMs) with a toroidal topology can be used to analyze a ToF-SIMS hyperspectral imaging data set and identify spectral similarities between pixels. We present a method for color-tagging the toroidal SOM output, which reduces the entire data set to a single RGB image in which similar pixels-based on their associated mass spectra-are assigned a similar color. This method was exemplified using a ToF-SIMS image of dried large multilamellar vesicles (LMVs), loaded with the antibiotic cefditoren pivoxil (CP). We successfully identified CP-loaded and empty LMVs without the need for any prior knowledge of the sample, despite their highly similar spectra. We also identified which specific ion peaks were most important in differentiating the two LMV populations. This approach is entirely unsupervised and requires minimal experimenter input. It was developed with the aim of providing a user-friendly yet sophisticated workflow for understanding complex biological samples using ToF-SIMS images.

20.
Anal Chem ; 90(21): 12475-12484, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30260219

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is advancing rapidly, providing instruments with growing capabilities and resolution. The data sets generated by these instruments are likewise increasing dramatically in size and complexity. Paradoxically, methods for efficient analysis of these large, rich data sets have not improved at the same rate. Clearly, more effective computational methods for analysis of ToF-SIMS data are becoming essential. Several research groups are customizing standard multivariate analytical tools to decrease computational demands, provide user-friendly interfaces, and simplify identification of trends and features in large ToF-SIMS data sets. We previously applied mass segmented peak lists to data from PMMA, PTFE, PET, and LDPE. Self-organizing maps (SOMs), a type of artificial neural network (ANN), classified the polymers based on their molecular composition and primary ion probe type more effectively than simple PCA. The effectiveness of this approach led us to question whether it would be useful in distinguishing polymers that were very similar. How sensitive is the technique to changes in polymer chemical structure and composition? To address this question, we generated ToF-SIMS ion peak signatures for seven nylon polymers with similar chemistries and used our up-binning and SOM approach to classify and cluster the polymers. The widely used linear PCA method failed to separate the samples. Supervised and unsupervised training of SOMs using positive or negative ion mass spectra resulted in effective classification and separation of the seven nylon polymers. Our SOM classification method has proven to be tolerant of minor sample irregularities, sample-to-sample variations, and inherent data limitations including spectral resolution and noise. We have demonstrated the potential of machine learning methods to analyze ToF-SIMS data more effectively than traditional methods. Such methods are critically important for future complex data analysis and provide a pipeline for rapid classification and identification of features and similarities in large data sets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...