Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 30(1): 26-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050367

RESUMO

The CD1 protein family present lipid antigens to the immune system. CD1d has been observed in the CNS of MS patients, yet no studies have quantitatively characterized this expression and related it to inflammatory demyelinative activity in MS plaques. In this study, we set out to localize and quantify the presence of CD1d expression by astrocytes in MS brain tissue lesions. Formalin-fixed, paraffin-embedded MS and control brain tissues were examined. Lesions were classified as active, chronic active or chronic silent. Using immunofluorescence, the density of CD1d-positive cells was determined in active lesions, chronic active lesion edges and chronic active lesion centers. The percentage of CD1d-positive cells that were GFAP-positive was also determined in each of these regions. CD1d immunoreactivity was significantly increased in MS compared to control tissue, was significantly more prevalent in areas of active demyelination, and colocalized with GFAP-positive reactive astrocytes. Increases of CD1d immunoreactivity in the CNS of MS patients being greatest in areas of active demyelination and localized to GFAP-positive astrocytes lend support to the hypothesis of a lipid-targeted autoimmune process contributing to the pathogenesis of MS.


Assuntos
Antígenos CD1d/metabolismo , Astrócitos/metabolismo , Esclerose Múltipla/patologia , Adulto , Antígenos CD1d/genética , Encéfalo/patologia , Doenças Desmielinizantes/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo
2.
Acta Neuropathol ; 134(3): 403-422, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631093

RESUMO

Remyelination is limited in the majority of multiple sclerosis (MS) lesions despite the presence of oligodendrocyte precursor cells (OPCs) in most lesions. This observation has led to the view that a failure of OPCs to fully differentiate underlies remyelination failure. OPC differentiation requires intricate transcriptional regulation, which may be disrupted in chronic MS lesions. The expression of few transcription factors has been differentially compared between remyelinating lesions and lesions refractory to remyelination. In particular, the oligodendrocyte transcription factor myelin regulatory factor (MYRF) is essential for myelination during development, but its role during remyelination and expression in MS lesions is unknown. To understand the role of MYRF during remyelination, we genetically fate mapped OPCs following lysolecithin-induced demyelination of the corpus callosum in mice and determined that MYRF is expressed in new oligodendrocytes. OPC-specific Myrf deletion did not alter recruitment or proliferation of these cells after demyelination, but decreased the density of new glutathione S-transferase π positive oligodendrocytes. Subsequent remyelination in both the spinal cord and corpus callosum is highly impaired following Myrf deletion from OPCs. Individual OPC-derived oligodendrocytes, produced in response to demyelination, showed little capacity to express myelin proteins following Myrf deletion. Collectively, these data demonstrate a crucial role of MYRF in the transition of oligodendrocytes from a premyelinating to a myelinating phenotype during remyelination. In the human brain, we find that MYRF is expressed in NogoA and CNP-positive oligodendrocytes. In MS, there was both a lower density and proportion of oligodendrocyte lineage cells and NogoA+ oligodendrocytes expressing MYRF in chronically demyelinated lesions compared to remyelinated shadow plaques. The relative scarcity of oligodendrocyte lineage cells expressing MYRF in demyelinated MS lesions demonstrates, for the first time, that chronic lesions lack oligodendrocytes that express this necessary transcription factor for remyelination and supports the notion that a failure to fully differentiate underlies remyelination failure.


Assuntos
Corpo Caloso/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Fatores de Transcrição/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Animais , Corpo Caloso/patologia , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/patologia , Proteínas Nogo/metabolismo , Oligodendroglia/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA