Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 629(Pt B): 76-86, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152582

RESUMO

The practical applications of room-temperature sodium-sulfur (RT Na-S) batteries have been greatly hindered by the natural sluggish reaction kinetics of sulfur and the shuttle effect of sodium polysulfide (NaPSs). Herein, oxygen vacancy (OV)-mediated amorphous GeOx/nitrogen doped carbon (donated as GeOx/NC) composites were well designed as sulfur hosts for RT Na-S batteries. Experimental and density functional theory studies show that the introduction of oxygen vacancies on GeOx/NC can effectively immobilize polysulfides and accelerate the redox kinetics of polysulfides. Meanwhile, the micro-and mesoporous framework, acting as a reactor for storing active S, is conducive to alleviating the expansion of S during the charging/discharging process. Consequently, the S@GeOx/NC cathode affords a reversible capacity of 1017 mA h g-1 at 0.1 A g-1 after 100 cycles, outstanding rate capability of 333 mA h g-1 at 10.0 A g-1 and long lifespan cyclability of 385 mAh g-1 at 1 A g-1 after 1200 cycles. This work furnishes a new way for the rational design of metal oxides with oxygen vacancies and boosts the application for RT Na-S batteries.

2.
Chem Commun (Camb) ; 58(98): 13612-13615, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36404723

RESUMO

CoS2/C microprisms with adsorption-catalysis synergistic effects were designed to be sulfur hosts in room-temperature sodium-sulfur batteries. CoS2/C can act as a polysulfide mediator to inhibit the shuttle effect and as a catalyst to accelerate polysulfide redox kinetics, achieving enhanced capabilities of 623 mA h g-1 after 870 cycles at 1 A g-1.

3.
Micromachines (Basel) ; 12(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683302

RESUMO

Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.

4.
Adv Mater ; 33(22): e2007465, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893682

RESUMO

Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.


Assuntos
Microfluídica , Nanoestruturas , Microbolhas
5.
Micromachines (Basel) ; 11(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610688

RESUMO

A controllable generation of oxygen gas during the decomposition of hydrogen peroxide by the microreactors made of tubular catalytic nanomembranes has recently attracted considerable attention. Catalytic microtubes play simultaneous roles of the oxygen bubble producing microreactors and oxygen bubble-driven micropumps. An autonomous pumping of peroxide fuel takes place through the microtubes by the recoiling microbubbles. Due to optimal reaction-diffusion processes, gas supersaturation, leading to favorable bubble nucleation conditions, strain-engineered catalytic microtubes with longer length produce oxygen microbubbles at concentrations of hydrogen peroxide in approximately ×1000 lower in comparison to shorter tubes. Dynamic regimes of tubular nanomembrane-based oxygen microbubble generators reveal that this depends on microtubes' aspect ratio, hydrogen peroxide fuel concentration and fuel compositions. Different dynamic regimes exist, which produce specific bubble frequencies, bubble size and various amounts of oxygen. In this study, the rolled-up Ti/Cr/Pd microtubes integrated on silicon substrate are used to study oxygen evolution in different concentrations of hydrogen peroxide and surfactants. Addition of Sodium dodecyl sulfate (SDS) surfactants leads to a decrease of bubble diameter and an increase of frequencies of bubble recoil. Moreover, an increase of temperature (from 10 to 35 °C) leads to higher frequencies of oxygen bubbles and larger total volumes of produced oxygen.

6.
RSC Adv ; 10(60): 36526-36530, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517949

RESUMO

Nano/-micromotors self-assembling into static and dynamic clusters are of considerable promise to study smart, interactive, responsive, and adaptive nano/-micromaterials that can mimic spatio-temporal patterns, swarming, and collective behaviors widely observed in nature. Previously, the dynamic self-assembly of bubble-propelled catalytic micromotors initiated by capillary forces has been reported. This manuscript shows novel self-assembly modes of magnetic/catalytic Ti/FeNi/Pt tubular micromotors. When chemical fuel (hydrogen peroxide) is added it is decomposed on contact with Pt catalyst into oxygen and water. Here, the non-bubbling motion and autonomous assembly of catalytic/magnetic nanomembranes, i.e. without nucleation/generation of oxygen bubbles, are shown. Moreover, magnetic Ti/FeNi/Pt micromotors are spun using an external magnetic field and they form dynamic clusters balanced by attractive magnetic and repulsive hydrodynamic interactions. Micromotors form dynamic clusters, undergo precession and rapidly propagate through the solution.

7.
Sci Rep ; 6: 20592, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846434

RESUMO

We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg(-1) after 50 cycles at a current density of 0.2 C (1 C = 890 mAg(-1)), good cycling stability and rate capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...