Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 2): 445-448, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891858

RESUMO

In Bragg coherent diffractive imaging, the precise location of the measured crystals in the interior of the sample is usually missing. Obtaining this information would help the study of the spatially dependent behavior of particles in the bulk of inhomogeneous samples, such as extra-thick battery cathodes. This work presents an approach to determine the 3D position of particles by precisely aligning them at the instrument axis of rotation. In the test experiment reported here, with a 60 µm-thick LiNi0.5Mn1.5O4 battery cathode, the particles were located with a precision of 20 µm in the out-of-plane direction, and the in-plane coordinates were determined with a precision of 1 µm.

2.
Rev Sci Instrum ; 93(7): 073902, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922329

RESUMO

A proof of concept is shown for the design of a high pressure heterogeneous catalysis reaction cell suitable for surface sensitive x-ray diffraction and x-ray reflectometry over planar samples using high energy synchrotron radiation in combination with mass spectrometry. This design enables measurements in a pressure range from several tens to hundreds of bars for surface investigations under realistic industrial conditions in heterogeneous catalysis or gaseous corrosion studies.

3.
Sci Rep ; 8(1): 2219, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396400

RESUMO

X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed in the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...