Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
2.
J Inherit Metab Dis ; 45(3): 635-656, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150145

RESUMO

Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.


Assuntos
Cálcio/metabolismo , Lipofuscina , Lipofuscinoses Ceroides Neuronais , Tioléster Hidrolases/metabolismo , Aciltransferases , Animais , Modelos Animais de Doenças , Homeostase , Humanos , Lisossomos/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/genética
3.
Biochem Biophys Res Commun ; 571: 137-144, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34325129

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL), also known as CLN1-disease, is a devastating neurodegenerative lysosomal storage disorder (LSD), caused by inactivating mutations in the CLN1 gene. The Cln1-/- mice, which mimic INCL, manifest progressive neuroinflammation contributing to neurodegeneration. However, the underlying mechanism of neuroinflammation in INCL and in Cln1-/- mice has remained elusive. Previously, it has been reported that microRNA-155 (miR-155) regulates inflammation and miR profiling in Cln1-/- mouse brain showed that the level of miR-155 was upregulated. Thus, we sought to determine whether ablation of miR-155 in Cln1-/- mice may suppress neuroinflammation in these mice. Towards this goal, we generated Cln1-/-/miR-155-/- double-knockout mice and evaluated the inflammatory signatures in the brain. We found that the brains of double-KO mice manifest progressive neuroinflammatory changes virtually identical to those found in Cln1-/- mice. We conclude that ablation of miR-155 in Cln1-/- mice does not alter the neuroinflammatory trajectory in INCL mouse model.


Assuntos
Modelos Animais de Doenças , Inflamação/metabolismo , MicroRNAs/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Inflamação/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
4.
J Inherit Metab Dis ; 44(4): 1051-1069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739454

RESUMO

S-palmitoylation is a reversible posttranslational modification in which a 16-carbon saturated fatty acid (generally palmitate) is attached to specific cysteine residues in polypeptides via thioester linkage. Dynamic S-palmitoylation (palmitoylation-depalmitoylation), like phosphorylation-dephosphorylation, regulates the function of numerous proteins, especially in the brain. While a family of 23 palmitoyl-acyl transferases (PATS), commonly known as ZDHHCs, catalyze S-palmitoylation of proteins, the thioesterases, localized either in the cytoplasm (eg, APT1) or in the lysosome (eg, PPT1) mediate depalmitoylation. Previously, we reported that APT1 requires dynamic S-palmitoylation for shuttling between the cytosol and the plasma membrane. APT1 depalmitoylated H-Ras to regulate its signaling pathway that stimulates cell proliferation. Although we demonstrated that APT1 catalyzed its own depalmitoylation, the ZDHHC(s) that S-palmitoylated APT1 had remained unidentified. We report here that ZDHHC5 and ZDHHC23 catalyze APT1 S-palmitoylation. Intriguingly, lysosomal Ppt1-deficiency in Cln1-/- mouse, a reliable animal model of INCL, markedly reduced ZDHHC5 and ZDHHC23 levels. Remarkably, in the brain of these mice decreased ZDHHC5 and ZDHHC23 levels suppressed membrane-bound APT1, thereby, increasing plasma membrane-localized H-Ras, which activated its signaling pathway stimulating microglia proliferation. Increased inflammatory cytokines produced by microglia together with increased complement C1q level contributed to the transformation of astrocytes to neurotoxic A1 phenotype. Importantly, neuroinflammation was ameliorated by treatment of Cln1-/- mice with a PPT1-mimetic small molecule, N-tert(Butyl)hydroxylamine (NtBuHA). Our results revealed a novel pathway to neuropathology in an INCL mouse model and uncovered a previously unrecognized mechanism of the neuroprotective actions of NtBuHA and its potential as a drug target.


Assuntos
Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética , Animais , Astrócitos/metabolismo , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Lipoilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/patologia
5.
J Inherit Metab Dis ; 43(5): 1082-1101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32279353

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease (LSD) caused by inactivating mutations in the CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme that catalyzes the deacylation of S-palmitoylated proteins to facilitate their degradation and clearance by lysosomal hydrolases. Despite the discovery more than two decades ago that CLN1 mutations causing PPT1-deficiency underlies INCL, the precise molecular mechanism(s) of pathogenesis has remained elusive. Here, we report that autophagy is dysregulated in Cln1-/- mice, which mimic INCL and in postmortem brain tissues as well as cultured fibroblasts from INCL patients. Moreover, Rab7, a small GTPase, critical for autophagosome-lysosome fusion, requires S-palmitoylation for trafficking to the late endosomal/lysosomal membrane where it interacts with Rab-interacting lysosomal protein (RILP), essential for autophagosome-lysosome fusion. Notably, PPT1-deficiency in Cln1-/- mice, dysregulated Rab7-RILP interaction and preventing autophagosome-lysosome fusion, which impaired degradative functions of the autolysosome leading to INCL pathogenesis. Importantly, treatment of Cln1-/- mice with a brain-penetrant, PPT1-mimetic, small molecule, N-tert (butyl)hydroxylamine (NtBuHA), ameliorated this defect. Our findings reveal a previously unrecognized role of CLN1/PPT1 in autophagy and suggest that small molecules functionally mimicking PPT1 may have therapeutic implications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lisossomos/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/genética , proteínas de unión al GTP Rab7
6.
J Inherit Metab Dis ; 42(5): 944-954, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025705

RESUMO

Mutations in at least 13 different genes (called CLNs) underlie various forms of neuronal ceroid lipofuscinoses (NCLs), a group of the most common neurodegenerative lysosomal storage diseases. While inactivating mutations in the CLN1 gene, encoding palmitoyl-protein thioesterases-1 (PPT1), cause infantile NCL (INCL), those in the CLN3 gene, encoding a protein of unknown function, underlie juvenile NCL (JNCL). PPT1 depalmitoylates S-palmitoylated proteins (constituents of ceroid) required for their degradation by lysosomal hydrolases and PPT1-deficiency causes lysosomal accumulation of autofluorescent ceroid leading to INCL. Because intracellular accumulation of ceroid is a characteristic of all NCLs, a common pathogenic link for these diseases has been suggested. It has been reported that CLN3-mutations suppress the exit of cation-independent mannose 6-phosphate receptor (CI-M6PR) from the trans Golgi network (TGN). Because CI-M6PR transports soluble proteins such as PPT1 from the TGN to the lysosome, we hypothesized that CLN3-mutations may cause lysosomal PPT1-insufficiency contributing to JNCL pathogenesis. Here, we report that the lysosomes in Cln3-mutant mice, which mimic JNCL, and those in cultured cells from JNCL patients, contain significantly reduced levels of Ppt1-protein and Ppt1-enzyme activity and progressively accumulate autofluorescent ceroid. Furthermore, in JNCL fibroblasts the V0a1 subunit of v-ATPase, which regulates lysosomal acidification, is mislocalized to the plasma membrane instead of its normal location on lysosomal membrane. This defect dysregulates lysosomal acidification, as we previously reported in Cln1 -/- mice, which mimic INCL. Our findings uncover a previously unrecognized role of CLN3 in lysosomal homeostasis and suggest that CLN3-mutations causing lysosomal Ppt1-insuffiiciency may at least in part contribute to JNCL pathogenesis.


Assuntos
Lisossomos/enzimologia , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/genética
7.
Mol Neurodegener ; 14(1): 4, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651094

RESUMO

Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.


Assuntos
Lisossomos , Lipofuscinoses Ceroides Neuronais , Humanos
8.
Nat Commun ; 8: 14612, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266544

RESUMO

Defective lysosomal acidification contributes to virtually all lysosomal storage disorders (LSDs) and to common neurodegenerative diseases like Alzheimer's and Parkinson's. Despite its fundamental importance, the mechanism(s) underlying this defect remains unclear. The v-ATPase, a multisubunit protein complex composed of cytosolic V1-sector and lysosomal membrane-anchored V0-sector, regulates lysosomal acidification. Mutations in the CLN1 gene, encoding PPT1, cause a devastating neurodegenerative LSD, INCL. Here we report that in Cln1-/- mice, which mimic INCL, reduced v-ATPase activity correlates with elevated lysosomal pH. Moreover, v-ATPase subunit a1 of the V0 sector (V0a1) requires palmitoylation for interacting with adaptor protein-2 (AP-2) and AP-3, respectively, for trafficking to the lysosomal membrane. Notably, treatment of Cln1-/- mice with a thioesterase (Ppt1)-mimetic, NtBuHA, ameliorated this defect. Our findings reveal an unanticipated role of Cln1 in regulating lysosomal targeting of V0a1 and suggest that varying factors adversely affecting v-ATPase function dysregulate lysosomal acidification in other LSDs and common neurodegenerative diseases.


Assuntos
Hidroxilaminas/uso terapêutico , Doenças por Armazenamento dos Lisossomos/enzimologia , Lisossomos/metabolismo , Tioléster Hidrolases/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Endossomos/enzimologia , Células HEK293 , Humanos , Lipoilação , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Camundongos , Distribuição Aleatória
9.
Ann Clin Transl Neurol ; 2(8): 797-809, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26339674

RESUMO

OBJECTIVE: Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase-1 deficiency, which impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury. As part of a pilot study to evaluate treatment benefits of cysteamine bitartrate and N-acetylcysteine, we quantitatively measured brain metabolite levels using magnetic resonance spectroscopy (MRS). METHODS: A subset of two patients from a larger treatment and follow-up study underwent serial quantitative single-voxel MRS examinations of five anatomical sites. Three echo times were acquired in order to estimate metabolite T2. Measured metabolite levels included correction for partial volume of cerebrospinal fluid. Comparison of INCL patients was made to a reference group composed of asymptomatic and minimally symptomatic Niemann-Pick disease type C patients. RESULTS: In INCL patients, N-acetylaspartate (NAA) was abnormally low at all locations upon initial measurement, and further declined throughout the follow-up period. In the cerebrum (affected early in the disease course), choline and myo-inositol were initially elevated and fell during the follow-up period, whereas in the cerebellum and brainstem (affected later), choline and myo-inositol were initially normal and rose subsequently. INTERPRETATION: Choline and myo-inositol levels in our patients are consistent with patterns of neuroinflammation observed in two INCL mouse models. Low, persistently declining NAA was expected based on the progressive, irreversible nature of the disease. Progression of metabolite levels in INCL has not been previously quantified; therefore the results of this study serve as a reference for quantitative evaluation of future therapeutic interventions.

10.
Hum Mol Genet ; 24(19): 5416-32, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160911

RESUMO

Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL.


Assuntos
Encéfalo/metabolismo , Catepsina D/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/genética , Animais , Encéfalo/patologia , Catepsina D/deficiência , Criança , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Lisossomos/metabolismo , Camundongos , Mutação , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética
11.
Ann Clin Transl Neurol ; 2(12): 1085-104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26734660

RESUMO

OBJECTIVE: Oxidative stress in the brain is highly prevalent in many neurodegenerative disorders including lysosomal storage disorders, in which neurodegeneration is a devastating manifestation. Despite intense studies, a precise mechanism linking oxidative stress to neuropathology in specific neurodegenerative diseases remains largely unclear. METHODS: Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease caused by mutations in the ceroid lipofuscinosis neuronal-1 (CLN1) gene encoding palmitoyl-protein thioesterase-1. Previously, we reported that in the brain of Cln1 (-/-) mice, which mimic INCL, and in postmortem brain tissues from INCL patients, increased oxidative stress is readily detectable. We used molecular, biochemical, immunohistological, and electrophysiological analyses of brain tissues of Cln1 (-/-) mice to study the role(s) of oxidative stress in mediating neuropathology. RESULTS: Our results show that in Cln1 (-/-) mice oxidative stress in the brain via upregulation of the transcription factor, CCAAT/enhancer-binding protein-δ, stimulated expression of serpina1, which is an inhibitor of a serine protease, neurotrypsin. Moreover, in the Cln1 (-/-) mice, suppression of neurotrypsin activity by serpina1 inhibited the cleavage of agrin (a large proteoglycan), which substantially reduced the production of agrin-22, essential for synaptic homeostasis. Direct whole-cell recordings at the nerve terminals of Cln1 (-/-) mice showed inhibition of Ca(2+) currents attesting to synaptic dysfunction. Treatment of these mice with a thioesterase-mimetic small molecule, N-tert (Butyl) hydroxylamine (NtBuHA), increased agrin-22 levels. INTERPRETATION: Our findings provide insight into a novel pathway linking oxidative stress with synaptic pathology in Cln1 (-/-) mice and suggest that NtBuHA, which increased agrin-22 levels, may ameliorate synaptic dysfunction in this devastating neurodegenerative disease.

12.
Lancet Neurol ; 13(8): 777-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997880

RESUMO

BACKGROUND: Infantile neuronal ceroid lipofuscinosis is a devastating neurodegenerative lysosomal storage disease caused by mutations in the gene (CLN1 or PPT1) encoding palmitoyl-protein thioesterase-1 (PPT1). We have previously reported that phosphocysteamine and N-acetylcysteine mediate ceroid depletion in cultured cells from patients with this disease. We aimed to assess whether combination of oral cysteamine bitartrate and N-acetylcysteine is beneficial for patients with neuronal ceroid lipofuscinosis. METHODS: Children between 6 months and 3 years of age with infantile neuronal ceroid lipofuscinosis with any two of the seven most lethal PPT1 mutations were eligible for inclusion in this pilot study. All patients were recruited from physician referrals. Patients received oral cysteamine bitartrate (60 mg/kg per day) and N-acetylcysteine (60 mg/kg per day) and were assessed every 6-12 months until they had an isoelectric electroencephalogram (EEG, attesting to a vegetative state) or were too ill to travel. Patients were also assessed by electroretinography, brain MRI and magnetic resonance spectroscopy (MRS), and electron microscopic analyses of leukocytes for granular osmiophilic deposits (GRODs). Children also underwent physical and neurodevelopmental assessments on the Denver scale. Outcomes were compared with the reported natural history of infantile neuronal ceroid lipofuscinosis and that of affected older siblings. This trial is registered with ClinicalTrials.gov, number NCT00028262. FINDINGS: Between March 14, 2001, and June 30, 2012, we recruited ten children with infantile neuronal ceroid lipofuscinosis; one child was lost to follow-up after the first visit and nine patients (five girls and four boys) were followed up for 8 to 75 months. MRI showed abnormalities similar to those in previous reports; brain volume and N-acetyl aspartic acid (NAA) decreased steadily, but no published quantitative MRI or MRS studies were available for comparison. None of the children acquired new developmental skills, and their retinal function decreased progressively. Average time to isoelectric EEG (52 months, SD 13) was longer than reported previously (36 months). At the first follow-up visit, peripheral leukocytes in all nine patients showed virtually complete depletion of GRODs. Parents and physicians reported less irritability, improved alertness, or both in seven patients. No treatment-related adverse events occurred apart from mild gastrointestinal discomfort in two patients, which disappeared when liquid cysteamine bitartrate was replaced with capsules. INTERPRETATION: Our findings suggest that combination therapy with cysteamine bitartrate and N-acetylcysteine is associated with delay of isoelectric EEG, depletion of GRODs, and subjective benefits as reported by parents and physicians. Our systematic and quantitative report of the natural history of patients with infantile neuronal ceroid lipofuscinosis provides a guide for future assessment of experimental therapies. FUNDING: National Institutes of Health.


Assuntos
Acetilcisteína/administração & dosagem , Cisteamina/administração & dosagem , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Administração Oral , Pré-Escolar , Quimioterapia Combinada , Eletroencefalografia/métodos , Feminino , Seguimentos , Humanos , Lactente , Masculino , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Projetos Piloto
13.
Ann Clin Transl Neurol ; 1(12): 1006-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25574475

RESUMO

OBJECTIVE: Nonsense mutations account for 5-70% of all genetic disorders. In the United States, nonsense mutations in the CLN1/PPT1 gene underlie >40% of the patients with infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative lysosomal storage disease. We sought to generate a reliable mouse model of INCL carrying the most common Ppt1 nonsense mutation (c.451C>T) found in the United States patient population to provide a platform for evaluating nonsense suppressors in vivo. METHODS: We knocked-in c.451C>T nonsense mutation in the Ppt1 gene in C57 embryonic stem (ES) cells using a targeting vector in which LoxP flanked the Neo cassette, which was removed from targeted ES cells by electroporating Cre. Two independently targeted ES clones were injected into blastocysts to generate syngenic C57 knock-in mice, obviating the necessity for extensive backcrossing. RESULTS: Generation of Ppt1-KI mice was confirmed by DNA sequencing, which showed the presence of c.451C>T mutation in the Ppt1 gene. These mice are viable and fertile, although they developed spasticity (a "clasping" phenotype) at a median age of 6 months. Autofluorescent storage materials accumulated throughout the brain regions and in visceral organs. Electron microscopic analysis of the brain and the spleen showed granular osmiophilic deposits. Increased neuronal apoptosis was particularly evident in cerebral cortex and abnormal histopathological and electroretinographic (ERG) analyses attested striking retinal degeneration. Progressive deterioration of motor coordination and behavioral parameters continued until eventual death. INTERPRETATION: Our findings show that Ppt1-KI mice reliably recapitulate INCL phenotype providing a platform for testing the efficacy of existing and novel nonsense suppressors in vivo.

14.
Nat Neurosci ; 16(11): 1608-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056696

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disease (LSD) that has no effective treatment. It is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 deficiency impairs the cleavage of thioester linkage in palmitoylated proteins (constituents of ceroid), preventing degradation by lysosomal hydrolases. Consequently, accumulation of lysosomal ceroid leads to INCL. Thioester linkage is cleaved by nucleophilic attack. Hydroxylamine, a potent nucleophilic cellular metabolite, may have therapeutic potential for INCL, but its toxicity precludes clinical application. We found that a hydroxylamine derivative, N-(tert-Butyl) hydroxylamine (NtBuHA), was non-toxic, cleaved thioester linkage in palmitoylated proteins and mediated lysosomal ceroid depletion in cultured cells from INCL patients. In Ppt1(-/-) mice, which mimic INCL, NtBuHA crossed the blood-brain barrier, depleted lysosomal ceroid, suppressed neuronal apoptosis, slowed neurological deterioration and extended lifespan. Our findings provide a proof of concept that thioesterase-mimetic and antioxidant small molecules such as NtBuHA are potential drug targets for thioesterase deficiency diseases such as INCL.


Assuntos
Hidroxilaminas/uso terapêutico , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Fármacos Neuroprotetores/uso terapêutico , Tioléster Hidrolases/deficiência , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Isótopos de Carbono/metabolismo , Células Cultivadas , Córtex Cerebral/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Longevidade/efeitos dos fármacos , Longevidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Fármacos Neuroprotetores/metabolismo , Palmitoil Coenzima A/efeitos dos fármacos , Palmitoil Coenzima A/metabolismo , Fatores de Tempo
15.
J Biol Chem ; 288(13): 9112-25, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23396970

RESUMO

Acyl-protein thioesterase-1 (APT1) and APT2 are cytosolic enzymes that catalyze depalmitoylation of membrane-anchored, palmitoylated H-Ras and growth-associated protein-43 (GAP-43), respectively. However, the mechanism(s) of cytosol-membrane shuttling of APT1 and APT2, required for depalmitoylating their substrates H-Ras and GAP-43, respectively, remained largely unknown. Here, we report that both APT1 and APT2 undergo palmitoylation on Cys-2. Moreover, blocking palmitoylation adversely affects membrane localization of both APT1 and APT2 and that of their substrates. We also demonstrate that APT1 not only catalyzes its own depalmitoylation but also that of APT2 promoting dynamic palmitoylation (palmitoylation-depalmitoylation) of both thioesterases. Furthermore, shRNA suppression of APT1 expression or inhibition of its thioesterase activity by palmostatin B markedly increased membrane localization of APT2, and shRNA suppression of APT2 had virtually no effect on membrane localization of APT1. In addition, mutagenesis of the active site Ser residue to Ala (S119A), which renders catalytic inactivation of APT1, also increased its membrane localization. Taken together, our findings provide insight into a novel mechanism by which dynamic palmitoylation links cytosol-membrane trafficking of APT1 and APT2 with that of their substrates, facilitating steady-state membrane localization and function of both.


Assuntos
Citosol/metabolismo , Proteína GAP-43/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas ras/metabolismo , Animais , Astrócitos/citologia , Domínio Catalítico , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Camundongos , Microscopia Confocal , Mutagênese , Mutação , Células NIH 3T3 , Neurônios/metabolismo , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Ligação Proteica , Proto-Oncogene Mas , Frações Subcelulares/metabolismo , Transfecção
16.
PLoS One ; 7(11): e48733, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139814

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL.


Assuntos
Tecido Adiposo Marrom/anormalidades , Tecido Adiposo Marrom/fisiopatologia , Regulação da Temperatura Corporal/fisiologia , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Tioléster Hidrolases/deficiência , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Temperatura Baixa , Modelos Animais de Doenças , Feminino , Temperatura Alta , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Neurotransmissores/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Tioléster Hidrolases/metabolismo , Proteína Desacopladora 1 , Núcleo Hipotalâmico Ventromedial/metabolismo , Núcleo Hipotalâmico Ventromedial/patologia , Núcleo Hipotalâmico Ventromedial/fisiopatologia
17.
Neurodegener Dis ; 9(4): 159-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327870

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) represent a group of common hereditary childhood neurodegenerative storage disorders that have no effective treatment. Mutations in eight different genes cause various forms of NCLs. Infantile NCL (INCL), the most lethal disease, is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. The availability of Ppt1-knockout (Ppt1-KO) mice, which recapitulate virtually all clinical and pathological features of INCL, provides an opportunity to test the effectiveness of novel therapeutic strategies in vivo. However, such studies will require noninvasive methods that can be used to perform serial evaluations of the same animal receiving an experimental therapy. Thus, the development of noninvasive method(s) of evaluation is urgently needed. Here, we report our evaluation of the progression of neurodegeneration in Ppt1-KO mice starting at 3 months of age by MRI and MR spectroscopy (MRS) and repeating these tests using the same mice at 4, 5 and 6 months of age. Our results showed progressive cerebral atrophy, which was associated with histological loss of neuronal content and increase in astroglia. Remarkably, while the brain volumes in Ppt1-KO mice progressively declined with advancing age, the MRS signals, which were significantly lower than those of their wild-type littermates, remained virtually unchanged from 3 to 6 months of age. In addition, our results also showed an abnormality in cerebral blood flow in these mice, which showed progression with age. Our findings provide methods to serially examine the brains of mouse models of neurodegenerative diseases (e.g. Ppt1-KO mice) using noninvasive and nonlethal procedures such as MRI and MRS. These methods may be useful in studies to understand the progression of neuropathology in animal models of neurodegenerative diseases as they allow repeated evaluations of the same animal in which experimental therapies are tested.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/patologia , Envelhecimento/patologia , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/genética , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/patologia , Tamanho do Órgão , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
18.
Hum Mol Genet ; 21(10): 2233-44, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331300

RESUMO

Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL.


Assuntos
Barreira Hematoencefálica/metabolismo , Inibidores Enzimáticos/farmacologia , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Estilbenos/farmacologia , Tioléster Hidrolases/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/enzimologia , Resveratrol , Tioléster Hidrolases/metabolismo
19.
J Biol Chem ; 286(38): 32883-9, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21799018

RESUMO

Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.


Assuntos
Asma/genética , Meio Ambiente , Asma/complicações , Asma/etiologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pneumonia/complicações , Pneumonia/genética , Síndrome
20.
Mol Genet Metab ; 104(3): 338-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21704547

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL), a lethal hereditary neurodegenerative lysosomal storage disorder, affects mostly children. It is caused by inactivating mutations in the palmitoyl-protein thioesterase-1(PPT1) gene. Nonsense mutations in a gene generate premature termination codons producing truncated,nonfunctional or deleterious proteins. PPT1 nonsense-mutations account for approximately 31% of INCL patients in the US. Currently, there is no effective treatment for this disease. While aminoglycosides such asgentamycin suppress nonsense mutations, inherent toxicity of aminoglycosides prohibits chronic use inpatients. PTC124 is a non-toxic compound that induces ribosomal read-through of premature termination codons. We sought to determine whether PTC124-treatment of cultured cells from INCL patients carrying nonsense mutations in the PPT1 gene would correct PPT1 enzyme-deficiency with beneficial effects. Our results showed that PTC124-treatment of cultured cells from INCL patients carrying PPT1 nonsense-mutations induced PPT1 enzymatic activity in a dose- and time-dependent manner. This low level of PPT1 enzyme activity induced by PTC124 is virtually identical to that induced by gentamycin-treatment. Even though only a modest increase in PPT1 activity was achieved by PTC124-treatment of INCL cells, this treatment reduced the levels of thioester (constituent of ceroid) load. Our results suggest that PTC124-treatment induces PPT1 enzymatic activity in cultured cells from INCL patients carrying PPT1 nonsense-mutations, and this modest enzymatic activity has demonstrable beneficial effects on these cells. The clinical relevance of these effects may be tested in animal models of INCL carrying nonsense mutations in the PPT1 gene.


Assuntos
Apoptose/efeitos dos fármacos , Códon de Terminação/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Oxidiazóis/farmacologia , Células Cultivadas , Cromatografia em Camada Fina , Códon sem Sentido/genética , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Imunofluorescência , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Lipofuscinoses Ceroides Neuronais/genética , Sais de Tetrazólio , Tiazóis , Tioléster Hidrolases , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...