Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Alzheimers Dis ; 98(4): 1277-1282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517792

RESUMO

Air pollution exposures ought to be of significant interest for the United States (US) public as health issues will play a role in the 2024 elections. Citizens are not aware of the harmful brain impact of exposures to ubiquitous anthropogenic combustion emissions and friction-derived nanoparticles, industrial nanoplastics, the growing risk of wildfires, and the smoke plumes of soot. Ample consideration of pediatric and early adulthood hallmarks of Alzheimer's disease, Parkinson's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis and associations with neuropsychiatric and neurodevelopmental disorders in the process of setting, reviewing, and implementing standards for particulate matter (PM)2.5, ultrafine PM, and industrial nanoparticles must be of interest to US citizens.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Transtornos do Neurodesenvolvimento , Humanos , Estados Unidos/epidemiologia , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/etiologia
2.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371506

RESUMO

This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aß42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aß42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.


Assuntos
Poluição do Ar , Doença de Alzheimer , Apolipoproteína E4 , Material Particulado , Suicídio , Humanos , Poluição do Ar/efeitos adversos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Encéfalo/patologia , Cidades/epidemiologia , Interação Gene-Ambiente , Heterozigoto , México/epidemiologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Material Particulado/efeitos adversos , Suicídio/estatística & dados numéricos
3.
Front Neurol ; 14: 1117695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923490

RESUMO

Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aß1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.

4.
J Alzheimers Dis ; 91(2): 847-862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502327

RESUMO

BACKGROUND: Quadruple aberrant hyperphosphorylated tau, amyloid-ß, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE: This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS: The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS: Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION: There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos dos Movimentos , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Poluição do Ar/efeitos adversos , Sono , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Adulto Jovem , Adulto
5.
Front Hum Neurosci ; 17: 1297467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283093

RESUMO

The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?

6.
Toxics ; 10(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36287840

RESUMO

Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer's, Parkinson's and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects­15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)­were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.

7.
Toxics ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448417

RESUMO

Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34770082

RESUMO

We appraise newly accumulated evidence of the impact of particle pollution on the brain, the portals of entry, the neural damage mechanisms, and ultimately the neurological and psychiatric outcomes statistically associated with exposures. PM pollution comes from natural and anthropogenic sources such as fossil fuel combustion, engineered nanoparticles (NP ≤ 100 nm), wildfires, and wood burning. We are all constantly exposed during normal daily activities to some level of particle pollution of various sizes-PM2.5 (≤2.5 µm), ultrafine PM (UFP ≤ 100 nm), or NPs. Inhalation, ingestion, and dermal absorption are key portals of entry. Selected literature provides context for the US Environmental Protection Agency (US EPA) ambient air quality standards, the conclusions of an Independent Particulate Matter Review Panel, the importance of internal combustion emissions, and evidence suggesting UFPs/NPs cross biological barriers and reach the brain. NPs produce oxidative stress and neuroinflammation, neurovascular unit, mitochondrial, endoplasmic reticulum and DNA damage, protein aggregation and misfolding, and other effects. Exposure to ambient PM2.5 concentrations at or below current US standards can increase the risk for TIAs, ischemic and hemorrhagic stroke, cognitive deficits, dementia, and Alzheimer's and Parkinson's diseases. Residing in a highly polluted megacity is associated with Alzheimer neuropathology hallmarks in 99.5% of residents between 11 months and ≤40 y. PD risk and aggravation are linked to air pollution and exposure to diesel exhaust increases ALS risk. Overall, the literature supports that particle pollution contributes to targeted neurological and psychiatric outcomes and highlights the complexity of the pathophysiologic mechanisms and the marked differences in pollution profiles inducing neural damage. Factors such as emission source intensity, genetics, nutrition, comorbidities, and others also play a role. PM2.5 is a threat for neurological and psychiatric diseases. Thus, future research should address specifically the potential role of UFPs/NPs in inducing neural damage.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Poeira , Material Particulado/análise , Material Particulado/toxicidade , Emissões de Veículos/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-34206224

RESUMO

Quadruple aberrant hyperphosphorylated tau (p-τ), amyloid-ß peptide, alpha-synuclein and TDP-43 brainstem and supratentorial pathology are documented in forensic ≤40y autopsies in Metropolitan Mexico City (MMC), and p-τ is the major aberrant protein. Post-traumatic stress disorder (PTSD) is associated with an elevated risk of subsequent dementia, and rapid eye movement sleep behavior disorder (RBD) is documented in PD, AD, Lewy body dementia and ALS. This study aimed to identify an association between PTSD and potential pRBD in Mexico. An anonymous online survey of 4502 urban college-educated adults, 29.3 ± 10.3 years; MMC, n = 1865; non-MMC, n = 2637, measured PTSD symptoms using the Impact of Event Scale-Revised (IES-R) and pRBD symptoms using the RBD Single-Question. Over 50% of the participants had IES-R scores ≥33 indicating probable PTSD. pRBD was identified in 22.6% of the participants across Mexico and 32.7% in MMC residents with PTSD. MMC subjects with PTSD had an OR 2.6218 [2.5348, 2.7117] of answering yes to the pRBD. PTSD and pRBD were more common in women. This study showed an association between PTSD and pRBD, strengthening the possibility of a connection with misfolded proteinopathies in young urbanites. We need to confirm the RBD diagnosis using an overnight polysomnogram. Mexican women are at high risk for stress and sleep disorders.


Assuntos
Transtorno do Comportamento do Sono REM , alfa-Sinucleína , Adulto , Peptídeos beta-Amiloides , Tronco Encefálico , Proteínas de Ligação a DNA , Feminino , Humanos , México/epidemiologia , Sono , alfa-Sinucleína/metabolismo
10.
Environ Sci Technol ; 55(12): 8203-8214, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081443

RESUMO

Air pollution exposure is a risk factor for arrhythmia. The atrioventricular (AV) conduction axis is key for the passage of electrical signals to ventricles. We investigated whether environmental nanoparticles (NPs) reach the AV axis and whether they are associated with ultrastructural cell damage. Here, we demonstrate the detection of the shape, size, and composition of NPs by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 10 subjects from Metropolitan Mexico City (MMC) with a mean age of 25.3 ± 5.9 and a 71-year-old subject without cardiac pathology. We found that in every case, Fe, Ti, Al, Hg, Cu, Bi, and/or Si spherical or acicular NPs with a mean size of 36 ± 17 nm were present in the AV axis in situ, freely and as conglomerates, within the mitochondria, sarcomeres, lysosomes, lipofuscin, and/or intercalated disks and gap junctions of Purkinje and transitional cells, telocytes, macrophages, endothelium, and adjacent atrial and ventricular fibers. Erythrocytes were found to transfer NPs to the endothelium. Purkinje fibers with increased lysosomal activity and totally disordered myofilaments and fragmented Z-disks exhibited NP conglomerates in association with gap junctions and intercalated disks. AV conduction axis pathology caused by environmental NPs is a plausible and modifiable risk factor for understanding common arrhythmias and reentrant tachycardia. Anthropogenic, industrial, e-waste, and indoor NPs reach pacemaker regions, thereby increasing potential mechanisms that disrupt the electrical impulse pathways of the heart. The cardiotoxic, oxidative, and abnormal electric performance effects of NPs in pacemaker locations warrant extensive research. Cardiac arrhythmias associated with nanoparticle effects could be preventable.


Assuntos
Resíduo Eletrônico , Mercúrio , Nanopartículas , Taquicardia por Reentrada no Nó Atrioventricular , Idoso , Arritmias Cardíacas/induzido quimicamente , Nó Atrioventricular , Humanos , Resíduos Industriais , México , Titânio
11.
Front Neurol ; 12: 794071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126295

RESUMO

Exposure to metals is ubiquitous and emission sources include gasoline, diesel, smoke from wildfires, contaminated soil, water and food, medical implants, waste recycling facilities, subway exposures, and occupational environments. PM2.5 exposure is associated with impaired cognitive performance, neurobehavioral alterations, incidence of dementia, and Alzheimer's disease (AD) risk. Heavy-duty diesel vehicles are major emitters of metal-rich PM2.5 and nanoparticles in Metropolitan Mexico City (MMC). Cognitive impairment was investigated in 336 clinically healthy, middle-class, Mexican volunteers, age 29.2 ± 13.3 years with 13.7 ± 2.4 years of education using the Montreal Cognitive Assessment (MoCA). MoCA scores varied with age and residency in three Mexican cities with cognition deficits impacting ~74% of the young middle-class population (MoCA ≤ 25). MMC residents ≥31 years ( x ¯ 46.2 ± 11.8 y) had MoCA x ¯ 20.4 ± 3.4 vs. low pollution controls 25.2 ± 2.4 (p < 0.0001). Formal education years positively impacted MoCA total scores across all participants (p < 0.0001). Residency in PM2.5 polluted cities impacts multi-domain cognitive performance. Identifying and making every effort to lower key pollutants impacting neural risk trajectories and monitoring cognitive longitudinal performance are urgent. PM2.5 emission control should be prioritized, metal emissions targeted, and neuroprevention interventions implemented early.

12.
Environ Res ; 191: 110087, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32890478

RESUMO

To determine whether gait and balance dysfunction are present in young urbanites exposed to fine particular matter PM2.5 ≥ annual USEPA standard, we tested gait and balance with Tinetti and Berg tests in 575 clinically healthy subjects, age 21.0 ±â€¯5.7 y who were residents in Metropolitan Mexico City, Villahermosa and Reynosa. The Montreal Cognitive Assessment was also applied to an independent cohort n:76, age 23.3 ±â€¯9.1 y. In the 575 cohort, 75.4% and 34.4% had abnormal total Tinetti and Berg scores and high risk of falls in 17.2% and 5.7% respectively. BMI impacted negatively Tinetti and Berg performance. Gait dysfunction worsen with age and males performed worse than females. Gait and balance dysfunction were associated with mild cognitive impairment MCI (19.73%) and dementia (55.26%) in 57/76 and 19 cognitively intact subjects had gait and balance dysfunction. Seventy-five percent of urbanites exposed to PM2.5 had gait and balance dysfunction. For MMC residents-with historical documented Alzheimer disease (AD) and CSF abnormalities, these findings suggest Alzheimer Continuum is in progress. Early development of a Motoric Cognitive Risk Syndrome ought to be considered in city dwellers with normal cognition and gait dysfunction. The AD research frame in PM2.5 exposed young urbanites should include gait and balance measurements. Multicity teens and young adult cohorts are warranted for quantitative gait and balance measurements and neuropsychological and brain imaging studies in high vs low PM2.5 exposures. Early identification of gait and balance impairment in young air pollution-exposed urbanites would facilitate multidisciplinary prevention efforts for modifying the course of AD.


Assuntos
Poluição do Ar , Doença de Alzheimer , Disfunção Cognitiva , Adolescente , Poluição do Ar/efeitos adversos , Doença de Alzheimer/epidemiologia , Cidades , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , Feminino , Marcha , Humanos , Masculino , México/epidemiologia , Adulto Jovem
13.
J Alzheimers Dis ; 78(2): 479-503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32955466

RESUMO

Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.


Assuntos
Doença de Alzheimer/complicações , Encefalopatias/etiologia , Infecções por Coronavirus/complicações , Poluentes Ambientais/efeitos adversos , Nanopartículas/efeitos adversos , Doença de Parkinson/complicações , Pneumonia Viral/complicações , Adulto , Poluição do Ar/efeitos adversos , Doença de Alzheimer/fisiopatologia , COVID-19 , Progressão da Doença , Humanos , Pessoa de Meia-Idade , Pandemias , Doença de Parkinson/fisiopatologia , Suicídio/estatística & dados numéricos , População Urbana
14.
Environ Res ; 191: 110139, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888951

RESUMO

Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.


Assuntos
Doença de Alzheimer , Nanopartículas de Magnetita , Nanotubos , Tronco Encefálico , Criança , Cidades , Trato Gastrointestinal , Humanos , México , Agregados Proteicos , Titânio/toxicidade , Adulto Jovem , alfa-Sinucleína
15.
Environ Res ; 183: 109137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32006765

RESUMO

Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) youth have life time exposures to PM2.5 and O3 above standards. We focused on MMC residents ≤30 years and reviewed 134 consecutive autopsies of subjects age 20.03 ± 6.38 y (range 11 months to 30 y), the staging of Htau and ß amyloid, the lifetime cumulative PM2.5 (CPM 2.5) and the impact of the Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD. We also reviewed the results of the Montreal Cognitive Assessment (MoCA) and the brainstem auditory evoked potentials (BAEPs) in clinically healthy young cohorts. Mobile sources, particularly from non-regulated diesel vehicles dominate the MMC pollutant emissions exposing the population to PM2.5 concentrations above WHO and EPA standards. Iron-rich,magnetic, highly oxidative, combustion and friction-derived nanoparticles (CFDNPs) are measured in the brain of every MMC resident. Progressive development of Alzheimer starts in childhood and in 99.25% of 134 consecutive autopsies ≤30 years we can stage the disease and its progression; 66% of ≤30 years urbanites have cognitive impairment and involvement of the brainstem is reflected by auditory central dysfunction in every subject studied. The average age for dementia using MoCA is 20.6 ± 3.4 y. APOE4 vs 3 carriers have 1.26 higher odds of committing suicide. PM2.5 and CFDNPs play a key role in the development of neuroinflammation and neurodegeneration in young urbanites. A serious health crisis is in progress with social, educational, judicial, economic and overall negative health impact for 25 million residents. Understanding the neural circuitry associated with the earliest cognitive and behavioral manifestations of AD is needed. Air pollution control should be prioritised-including the regulation of diesel vehicles- and the first two decades of life ought to be targeted for neuroprotective interventions. Defining paediatric environmental, nutritional, metabolic and genetic risk factor interactions is a multidisciplinary task of paramount importance to prevent Alzheimer's disease. Current and future generations are at risk.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Adolescente , Poluentes Atmosféricos/toxicidade , Doença de Alzheimer/epidemiologia , Criança , Cidades , Humanos , México/epidemiologia , Material Particulado
16.
Environ Res ; 176: 108567, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344533

RESUMO

Air pollution is a risk factor for cardiovascular and Alzheimer's disease (AD). Iron-rich, strongly magnetic, combustion- and friction-derived nanoparticles (CFDNPs) are abundant in particulate air pollution. Metropolitan Mexico City (MMC) young residents have abundant brain CFDNPs associated with AD pathology. We aimed to identify if magnetic CFDNPs are present in urbanites' hearts and associated with cell damage. We used magnetic analysis and transmission electron microscopy (TEM) to identify heart CFDNPs and measured oxidative stress (cellular prion protein, PrPC), and endoplasmic reticulum (ER) stress (glucose regulated protein, GRP78) in 72 subjects age 23.8 ±â€¯9.4y: 63 MMC residents, with Alzheimer Continuum vs 9 controls. Magnetite/maghemite nanoparticles displaying the typical rounded crystal morphologies and fused surface textures of CFDNPs were more abundant in MMC residents' hearts. NPs, ∼2-10 × more abundant in exposed vs controls, were present inside mitochondria in ventricular cardiomyocytes, in ER, at mitochondria-ER contact sites (MERCs), intercalated disks, endothelial and mast cells. Erythrocytes were identified transferring 'hitchhiking' NPs to activated endothelium. Magnetic CFDNP concentrations and particle numbers ranged from 0.2 to 1.7 µg/g and ∼2 to 22 × 109/g, respectively. Co-occurring with cardiomyocyte NPs were abnormal mitochondria and MERCs, dilated ER, and lipofuscin. MMC residents had strong left ventricular PrPC and bi-ventricular GRP78 up-regulation. The health impact of up to ∼22 billion magnetic NPs/g of ventricular tissue are likely reflecting the combination of surface charge, ferrimagnetism, and redox activity, and includes their potential for disruption of the heart's electrical impulse pathways, hyperthermia and alignment and/or rotation in response to magnetic fields. Exposure to solid NPs appears to be directly associated with early and significant cardiac damage. Identification of strongly magnetic CFDNPs in the hearts of children and young adults provides an important novel layer of information for understanding CVD pathogenesis emphasizing the urgent need for prioritization of particulate air pollution control.


Assuntos
Poluentes Atmosféricos/metabolismo , Miocárdio/metabolismo , Nanopartículas/metabolismo , Poluição do Ar/estatística & dados numéricos , Cidades , Chaperona BiP do Retículo Endoplasmático , Exposição Ambiental/estatística & dados numéricos , Fricção , Coração , Humanos , Fenômenos Magnéticos , México , Material Particulado
17.
J Alzheimers Dis ; 70(2): 343-360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31256139

RESUMO

Exposures to fine particulate matter (PM2.5) and ozone (O3) ≥US EPA standards are associated with Alzheimer's disease (AD) risk. The projection of 13.8 million AD cases in the US by the year 2050 obligate us to explore early environmental exposures as contributors to AD risk and pathogenesis. Metropolitan Mexico City children and young adults have lifetime exposures to PM2.5 and O3, and AD starting in the brainstem and olfactory bulb is relentlessly progressing in the first two decades of life. Magnetite combustion and friction-derived nanoparticles reach the brain and are associated with early and progressive damage to the neurovascular unit and to brain cells. In this review: 1) we highlight the interplay environment/genetics in the AD development in young populations; 2) comment upon ApoE ɛ4 and the rapid progression of neurofibrillary tangle stages and higher suicide risk in youth; and 3) discuss the role of combustion-derived nanoparticles and brain damage. A key aspect of this review is to show the reader that air pollution is complex and that profiles change from city to city with common denominators across countries. We explore and compare particulate matter profiles in Mexico City, Paris, and Santiago in Chile and make the point of why we should invest in decreasing PM2.5 to at least our current US EPA standard. Multidisciplinary intervention strategies are critical for prevention or amelioration of cognitive deficits and AD progression and risk of suicide in young individuals. AD pathology evolving from childhood is threating the wellbeing of future generations.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/patologia , Fricção , Nanopartículas/efeitos adversos , Material Particulado/efeitos adversos , População Urbana/tendências , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/prevenção & controle , Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Criança , Pré-Escolar , Humanos , Adulto Jovem
18.
J Alzheimers Dis ; 70(4): 1275-1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31322574

RESUMO

A major impediment in early diagnosis of Alzheimer's disease (AD) is the lack of robust non-invasive biomarkers of early brain dysfunction. Metropolitan Mexico City (MMC) children and young adults show hyperphosphorylated tau, amyloid-ß, and α-synuclein within auditory and vestibular nuclei and marked dysmorphology in the ventral cochlear nucleus and superior olivary complex. Based on early involvement of auditory brainstem centers, we believe brainstem auditory evoked potentials can provide early AD biomarkers in MMC young residents. We measured brainstem auditory evoked potentials in MMC clinically healthy children (8.52±3.3 years) and adults (21.08±3.0 years, 42.48±8.5 years, and 71.2±6.4 years) compared to clean air controls (6.5±0.7 years) and used multivariate analysis adjusting for age, gender, and residency. MMC children had decreased latency to wave I, delays in waves III and V, and longer latencies for interwave intervals, consistent with delayed central conduction time of brainstem neural transmission. In sharp contrast, young adults have significantly shortened interwave intervals I-III and I-V. By the 5th decade, wave V and interval I-V were significantly shorter, while the elderly cohort had significant delay in mean latencies and interwave intervals. Compensatory plasticity, increased auditory gain, cochlear synaptopathy, neuroinflammation, and AD continuum likely play a role in the evolving distinct auditory pathology in megacity urbanites. Understanding auditory central and peripheral dysfunction in the AD continuum evolving and progressing in pediatric and young adult populations may shed light on the complex mechanisms of AD development and help identify strong noninvasive biomarkers. AD evolving from childhood in air pollution environments ought to be preventable.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , População Urbana/tendências , Adolescente , Adulto , Idoso , Doença de Alzheimer/fisiopatologia , Criança , Feminino , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
19.
J Alzheimers Dis ; 68(3): 1113-1123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909241

RESUMO

Exposures to fine particulate matter PM2.5 and ozone O3 are associated with Alzheimer's disease (AD) risk. Mexico City residents have lifetime exposures to PM2.5 and O3 above annual USEPA standards and their brains contain high redox, combustion, and friction-derived magnetite nanoparticles. AD pathological changes with subcortical pre-tangle stages in infancy and cortical tau pre-tangles, NFT Stages I-II, and amyloid phases 1-2 are identified by the 2nd decade. Given their AD continuum, a reliable identification of cognitive impairment is of utmost importance. The Montreal Cognitive Assessment (MoCA) was administered to 517 urbanites, age 21.60±5.88 years, with 13.69±1.28 formal education years, in Mexican PM2.5 polluted cities. MoCA score was 23.92±2.82, and 24.7% and 30.3% scored ≤24 and ≤22, respectively (MCI≤24, AD≤22). Cognitive deficits progressively targeted Visuospatial, Executive, Language, and Memory domains, body mass index (BMI) impacting total scores negatively (p = 0.0008), aging driving down Executive, Visuospatial, and Language index scores (p < 0.0001, 0.0037, and 0.0045), and males performing better in Executive tasks. Average age for AD MoCA scores was 22.38±7.7 years. Residency in polluted cities is associated with progression of multi-domain cognitive impairment affecting 55% of Mexican seemingly healthy youth. Normal BMI ought to be a neuroprotection goal. MoCA provides guidance for further mandatory neuropsychological testing in young populations. Identifying and lowering key neurotoxicants impacting neural risk trajectories in the developing brain and monitoring cognitive performance would greatly facilitate multidisciplinary early diagnosis and prevention of AD in high risk young populations. Cognitive deficits hinder development of those representing the force moving the country in future years.


Assuntos
Disfunção Cognitiva/psicologia , Demência/psicologia , Testes de Estado Mental e Demência , População Urbana/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Demência/diagnóstico , Demência/epidemiologia , Demência/etiologia , Feminino , Humanos , Masculino , México/epidemiologia , Fatores de Risco , Adulto Jovem
20.
J Alzheimers Dis ; 66(4): 1437-1451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412505

RESUMO

Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-ß1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aß1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/etiologia , Exposição Ambiental/efeitos adversos , Proteínas tau/líquido cefalorraquidiano , Adolescente , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Humanos , Masculino , México , Fosforilação , Projetos Piloto , Estudos Prospectivos , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...