Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(5): 1244-1265, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38197332

RESUMO

Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Suor , Líquido Extracelular , Microfluídica , Dispositivos Lab-On-A-Chip
2.
Clin Epidemiol Glob Health ; 15: 101013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342843

RESUMO

The main reason for the growth of mucormycosis in people with Coronavirus disease-2019 (COVID-19) is mainly produced by Rhizopus spp. The infective mechanisms and issues recognized in Rhizopus spp. are the cell wall, germination proteins, and enzymes assisted to iron sequestration, CotH protein, and positive regulation of the GRP78 cell receptor. Mucormycosis is mainly caused by the Rhizopus spp. such as R. oryzae, R. microsporus, R. arrhizus, R. homothallicus, etc. that are gifted to numerous host defense mechanisms and attribute to the endothelium via specific receptors, GRP78 simplifying their endocytosis and angio-invasion. Factors such as hyperglycemia, elevated iron concentrations, and ketoacidosis have been shown to contribute to the pathogenesis in the tentative situation. The analytical data of 'black fungus disease' or 'mucormycosis', specify India reported for about 42.3% of published cases, followed by the USA about 16.9%, Iraq, Bangladesh, Iran, Paraguay, and 1 case each from Brazil, Mexico, Italy, UK, China, France, Uruguay, Turkey, and Austria. The COVID-19 infection is maybe a predisposing factor for mucormycosis and is related to a high mortality rate. Early recognition and restriction of hyperglycemia, liposomal amphotericin B, and surgical debridement are the bases in the successful managing of mucormycosis.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6863-6866, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892683

RESUMO

Operating at low sweat rates, such as those experienced by humans at rest, is still an unmet need for state-of-the-art wearable sweat harvesting and testing devices for lactate. Here, we report the on-skin performance of a non-invasive wearable sweat sampling patch that can harvest sweat at rest, during exercise, and post-exercise. The patch simultaneously uses osmosis and evaporation for long-term (several hours) sampling of sweat. Osmotic sweat withdrawal is achieved by skin-interfacing a hydrogel containing a concentrated solute. The gel interfaces with a paper strip that transports the fluid via wicking and evaporation. Proof of concept results show that the patch was able to sample sweat during resting and post-exercise conditions, where the lactate concentration was successfully quantified. The patch detected the increase in sweat lactate levels during medium level exercise. Blood lactate remained invariant with exercise as expected. We also developed a continuous sensing version of the patch by including enzymatic electrochemical sensors. Such a battery-free, passive, wearable sweat sampling patch can potentially provide useful information about the human metabolic activity.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis , Ácido Láctico , Sudorese
4.
Micromachines (Basel) ; 12(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34945363

RESUMO

Lactate is an essential biomarker for determining the health of the muscles and oxidative stress levels in the human body. However, most of the currently available sweat lactate monitoring devices require external power, cannot measure lactate under low sweat rates (such as in humans at rest), and do not provide adequate information about the relationship between sweat and blood lactate levels. Here, we discuss the on-skin operation of our recently developed wearable sweat sampling patch. The patch combines osmosis (using hydrogel discs) and capillary action (using paper microfluidic channel) for long-term sweat withdrawal and management. When subjects are at rest, the hydrogel disc can withdraw fluid from the skin via osmosis and deliver it to the paper. The lactate amount in the fluid is determined using a colorimetric assay. During active sweating (e.g., exercise), the paper can harvest sweat even in the absence of the hydrogel patch. The captured fluid contains lactate, which we quantify using a colorimetric assay. The measurements show the that the total number of moles of lactate in sweat is correlated to sweat rate. Lactate concentrations in sweat and blood correlate well only during high-intensity exercise. Hence, sweat appears to be a suitable biofluid for lactate quantification. Overall, this wearable patch holds the potential of providing a comprehensive analysis of sweat lactate trends in the human body.

5.
ACS Appl Mater Interfaces ; 13(7): 8071-8081, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587589

RESUMO

Biomarkers in sweat are a largely untapped source of health information. Most of the currently available sweat harvesting and testing devices are incapable of operating under low-sweat rates such as those experienced by humans at rest. Here we analyze the in vitro and in vivo sampling of sweat through osmosis via the use of a hydrogel interfaced with the skin, without need for active perspiration. The hydrogel also interfaces with paper-based microfluidics to transport the fluid via capillary forces toward a testing zone and then evaporation pad. We show that the hydrogel solute content and area of the evaporation pad regulate the long-term extraction of sweat and its associated biomarkers. The results indicate that the platform can sample biomarkers from a model skin system continuously for approximately 12 h. On-skin testing of the platform on both resting and exercising human subjects confirms that it can sample sweat lactate directly from the surface of skin. The results highlight that lactate in sweat increases with exercise and as a direct result of muscle activity. Implementation of such new principles for sweat fluid harvesting and management via wearable patch devices can contribute toward the advancement of next generation wearables.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Pressão Osmótica , Pele/química , Suor/química , Dispositivos Eletrônicos Vestíveis , Biomarcadores/análise , Humanos , Hidrogéis/química , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...