Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int Immunopharmacol ; 133: 112120, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657497

RESUMO

Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.


Assuntos
Filariose Linfática , Glutarredoxinas , Wuchereria bancrofti , Glutarredoxinas/imunologia , Glutarredoxinas/metabolismo , Animais , Filariose Linfática/prevenção & controle , Filariose Linfática/imunologia , Humanos , Wuchereria bancrofti/imunologia , Epitopos de Linfócito T/imunologia , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Camundongos , Antígenos de Helmintos/imunologia , Feminino , Camundongos Endogâmicos BALB C
3.
Front Immunol ; 14: 1244345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822929

RESUMO

Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Receptores Toll-Like/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Imunidade Adaptativa
4.
Chemistry ; 29(70): e202302529, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37846644

RESUMO

We showed solvent- and concentration-triggered chiral tuning of the fibrous assemblies of two novel glycoconjugates Z-P(Gly)-Glu and Z-F(4-N)-Glu made by chemical attachment of Cbz-protected [short as Z)] non-proteinogenic amino acids L-phenylglycine [short as P(Gly)] and 4-Nitro-L-phenylalanine [short as F(4-N)] with D-glucosamine [short as Glu]. Both biomimetic gelators can form self-healing and shape-persistent gels with a very low critical gelator concentration in water as well as in various organic solvents, indicating they are ambidextrous supergelators. Detailed spectroscopic studies suggested ß-sheet secondary structure formation during anisotropic self-aggregation of the gelators which resulted in the formation of hierarchical left-handed helical fibers in acetone with an interlayer spacing of 2.4 nm. After the physical characterization of the gels, serum protein interaction with the gelators was assessed, indicating they may be ideal for biomedical applications. Further, both gelators are benign, non-immunogenic, non-allergenic, and non-toxic in nature, which was confirmed by performing the blood parameters and liver function tests on Wister rats. Streptomycin-loaded hydrogels showed efficacious antibacterial activity in vitro and in vivo as well. Finally, cell attachment and biocompatibility of the hydrogels were demonstrated which opens a newer avenue for promising biomedical and therapeutic applications.


Assuntos
Aminoácidos , Estreptomicina , Ratos , Animais , Aminoácidos/química , Solventes/química , Ratos Wistar , Hidrogéis/química
5.
Mol Biochem Parasitol ; 256: 111594, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37730126

RESUMO

With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.


Assuntos
Anti-Helmínticos , Nematoides , Animais , Humanos , Caenorhabditis elegans , Ensaios de Triagem em Larga Escala , Anti-Helmínticos/farmacologia , Ásia Meridional
6.
J Cell Mol Med ; 27(19): 2819-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605891

RESUMO

More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.


Assuntos
Apoptose , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo
7.
PLoS One ; 18(8): e0289064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535606

RESUMO

Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Humanos , Colite Ulcerativa/metabolismo , Transformação Celular Neoplásica/patologia , Recidiva Local de Neoplasia , Neoplasias Colorretais/patologia , Carcinogênese/genética
8.
Methods Mol Biol ; 2673: 431-452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258931

RESUMO

Since the onset of the COVID-19 pandemic, a number of approaches have been adopted by the scientific communities for developing efficient vaccine candidate against SARS-CoV-2. Conventional approaches of developing a vaccine require a long time and a series of trials and errors which indeed limit the feasibility of such approaches for developing a dependable vaccine in an emergency situation like the COVID-19 pandemic. Hitherto, most of the available vaccines have been developed against a particular antigen of SARS-CoV, spike protein in most of the cases, and intriguingly, these vaccines are not effective against all the pathogenic coronaviruses. In this context, immunoinformatics-based reverse vaccinology approaches enable a robust design of efficacious peptide-based vaccines against all the infectious strains of coronaviruses within a short frame of time. In this chapter, we enumerate the methodological trajectory of developing a universal anti-SARS-CoV-2 vaccine, namely, "AbhiSCoVac," through advanced computational biology-based immunoinformatics approach and its in-silico validation using molecular dynamics simulations.


Assuntos
COVID-19 , Vacinas Virais , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Pandemias/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas de Subunidades Antigênicas , Biologia Computacional
9.
Future Virol ; 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37064327

RESUMO

Diabetic patients are at particular risk of severe COVID-19. Human dipeptidyl peptidase-4 (DPP-4) is a membrane-bound aminopeptidase that regulates insulin release by inactivating incretin. DPP-4 inhibitors (DPP-4is) are therefore used as oral anti-diabetic drugs to restore normal insulin levels. These molecules also have anti-inflammatory and anti-hypertension effects. Recent studies on the interactions of SARS-CoV-2 spike glycoprotein and DPP-4 predict a possible entry route for SARS-CoV-2. Therefore, DPP-4is could be effective at reducing the virus-induced 'cytokine storm', thereby ceasing inflammatory injury to vital organs. Moreover, DPP-4is may interfere with viral entry into host cells. Herein, we have reviewed the efficacy of DPP-4is as potential repurposed drugs to reduce the severity of SARS-CoV-2 infection in patients with diabetes.

10.
MethodsX ; 10: 102158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091959

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory manifestation of the human colon that is linked with colorectal cancer. Development of an appropriate animal model is crucial to study the immunopathophysiology of UC wherein chemical induction is the most popular method of choice. However, unavailability of an optimum experimental model limits the success of this method. The present study aims to establish an optimized model for acetic acid-induced colitis in Sprague Dawley rats. Response Surface Methodology (RSM) with a six-factors Box-Behnken design was employed to generate an improved method of inducing UC in rat, predicting the case statistics, apposite investigation of quadratic response surfaces, and construction of a second-order polynomial equation. UC was diagnosed through three responses viz. weight loss, severity of diarrhea, and appearance of blood in the stool. Analysis of variance alongside RSM jointly revealed that induction of UC can be achieved with highest probability using the combination of parameters that includes 120 gm body weight, 1.5 ml of 4% acetic-acid v/v in distilled water with a single dose of treatment for 24 h including a pre-induction of 5 mins. This optimized UC-induction model was validated in-vivo through disease scoring index and hematological assessments with satisfactory level of desirability. •An improved experimental method for inducing ulcerative colitis (UC) in Sprague Dawley rats has been developed.•Box-Behnken Design-fitted Response Surface Methodology (RSM) was implicated in optimizing the experimental parameters for generating UC.•This statistically optimized and experimentally validated method resembles the recipe for the generation of UC in animal model with the highest possible desirability.

11.
Int J Biol Macromol ; 241: 124649, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119907

RESUMO

Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.


Assuntos
Doenças Autoimunes , Doenças Transmissíveis , Helmintos , Parasitos , Animais , Humanos , Doenças Autoimunes/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
12.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992108

RESUMO

Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein-protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.

13.
Antibodies (Basel) ; 12(1)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36975364

RESUMO

Mutation(s) in the spike protein is the major characteristic trait of newly emerged SARS-CoV-2 variants such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Delta-plus. Omicron (B.1.1.529) is the latest addition and it has been characterized by high transmissibility and the ability to escape host immunity. Recently developed vaccines and repurposed drugs exert limited action on Omicron strains and hence new therapeutics are immediately needed. Herein, we have explored the efficiency of twelve therapeutic monoclonal antibodies (mAbs) targeting the RBD region of the spike glycoprotein against all the Omicron variants bearing a mutation in spike protein through molecular docking and molecular dynamics simulation. Our in silico evidence reveals that adintivimab, beludivimab, and regadanivimab are the most potent mAbs to form strong biophysical interactions and neutralize most of the Omicron variants. Considering the efficacy of mAbs, we incorporated CDRH3 of beludavimab within the framework of adintrevimab, which displayed a more intense binding affinity towards all of the Omicron variants viz. BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. Furthermore, the cDNA of chimeric mAb was cloned in silico within pET30ax for recombinant production. In conclusion, the present study represents the candidature of human mAbs (beludavimab and adintrevimab) and the therapeutic potential of designed chimeric mAb for treating Omicron-infected patients.

14.
Int Immunopharmacol ; 115: 109639, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586276

RESUMO

Proteases are the critical mediators of immunomodulation exerted by the filarial parasites to bypass and divert host immunity. Cystatin is a small (∼15 kDa) immunomodulatory filarial protein and known to contribute in the immunomodulation strategy by inducing anti-inflammatory response through alternative activation of macrophages. Recently, Wuchereria bancrofti cystatin has been discovered as a ligand of human toll-like receptor 4 which is key behind the cystatin-induced anti-inflammatory response in major human antigen-presenting cells. Considering the pivotal role of cystatin in the immunobiology of filariasis, cystatin could be an efficacious target for developing vaccine. Herein, we present the design and in-silico analyses of a multi-epitope-based peptide vaccine to target W. bancrofti cystatin through immune-informatics approaches. The 262 amino acid long antigen construct comprises 9 MHC-I epitopes and MHC-II epitopes linked together by GPGPG peptide alongside an adjuvant (50S ribosomal protein L7/L12) at N terminus and 6 His tags at C terminus. Molecular docking study reveals that the peptide could trigger TLR4-MD2 to induce protective innate immune responses while the induced adaptive responses were found to be mediated by IgG, IgM and Th1 mediated responses. Notably, the designed vaccine exhibits high stability and no allergenicity in-silico. Furthermore, the muti epitope-vaccine was also predicted for its RNA structure and cloned in pET30ax for further experimental validation. Taken together, this study presents a novel multi-epitope peptide vaccine for triggering efficient innate and adaptive immune responses against W. bancrofti to intervene LF through immunotherapy.


Assuntos
Cistatinas , Wuchereria bancrofti , Animais , Humanos , Epitopos , Simulação de Acoplamento Molecular , Vacinologia , Vacinas de Subunidades Antigênicas , Peptídeos , Anti-Inflamatórios , Biologia Computacional , Epitopos de Linfócito T , Epitopos de Linfócito B
15.
Future Virol ; 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812188

RESUMO

Aim: Considering the present alarming situation of COVID-19 pandemic, we concentrated on evaluating the efficacy of a novel natural antiviral drug-candidate andrographolide against SARS-CoV-2 through an in silico model of study. Materials & methods: Interaction of andrographolide against the major host molecules that are responsible for SARS-CoV-2 pathogenesis were determined using bio-computational tools, in other words, molecular docking, molecular dynamics simulation and pharmacodynamics-pharmacokinetics analysis. Result: Computational findings represent that andrographolide efficiently interacts with the major human-host-associated putative drug-targets of viral-entry points like furin (-10.54 kcal/mol), TMPRSS-2 (-9.50 kcal/mol), ACE2 (-8.99 kcal/mol) and Cathepsin L (-8.98 kcal/mol). Moreover, it also blocks the inflammatory regulators including TLR4-MD2 and IL-6, which promote virus-induced inflammation leading to cytokine storm in the host body. Conclusion: This work elucidates that, the candidature of andrographolide can be utilized as a potent natural agent for the therapeutic intervention of SARS-CoV-2 through host-directed treatment.

16.
Chemistry ; 28(63): e202201621, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861028

RESUMO

We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d-glucosamine has been attached chemically to Cbz-protected l-phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the ß-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l-leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Solventes/química , Prata/química , Nanopartículas Metálicas/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hidrogéis/química , Glicoconjugados/farmacologia
17.
Future Virol ; 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35462619

RESUMO

Toll-like receptor 4, an innate immune sensor, is one of the key 'fate-deciding' regulators of immunity as well as COVID-19 immunopathogenesis. Suitable targeting of Toll-like receptor 4 appears to be an effective strategy to counteract the pandemic.

18.
J Mol Liq ; 351: 118633, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35125571

RESUMO

The coronaviridae family has generated highly virulent viruses, including the ones responsible for three major pandemics in last two decades with SARS in 2002, MERS outbreak in 2012 and the current nCOVID19 crisis that has turned the world breadthless. Future outbreaks are also a plausible threat to mankind. As computational biologists, we are committed to address the need for a universal vaccine that can deter all these pathogenic viruses in a single shot. Notably, the spike proteins present in all these viruses function as credible PAMPs that are majorly sensed by human TLR4 receptors. Our study aims to recognize the amino acid sequence(s) of the viral spike proteins that are precisely responsible for interaction with human TLR4 and to screen the immunogenic epitopes present in them to develop a multi-epitope multi-target chimeric vaccine against the coronaviruses. Molecular design of the constructed vaccine peptide is qualified in silico; additionally, molecular docking and molecular dynamics simulation studies collectively reveal strong and stable interactions of the vaccine construct with TLRs and MHC receptors. In silico cloning is performed for proficient expression in bacterial systems. In silico immune simulation of the vaccine indicates highly immunogenic nature of the vaccine construct without any allergic response. The present biocomputational study hereby innovates a vaccine candidate - AbhiSCoVac hypothesized as a potent remedy to combat all the virulent forms of coronaviruses.

19.
Infect Genet Evol ; 98: 105237, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131521

RESUMO

Thioredoxin is a low molecular weight redox-active protein of filarial parasite that plays a crucial role in downregulating the host immune response to prolong the survival of the parasite within the host body. It has the ability to cope up with the oxidative challenges posed by the host. Hence, the antioxidant protein of the filarial parasite has been suggested to be a useful target for immunotherapeutic intervention of human filariasis. In this study, we have designed a multi-epitope peptide-based vaccine using thioredoxin of Wuchereria bancrofti. Different MHC-I and MHC-II epitopes were predicted using various web servers to construct the vaccine model as MHC-I and MHC-II epitopes are crucial for the development of both humoral and cellular immune responses. Moreover, TLRs specific adjuvants were also incorporated into the vaccine candidates as TLRs are the key immunomodulator to execute innate immunity. Protein-protein molecular docking and simulation analysis between the vaccine and human TLR was performed. TLR5 is the most potent receptor to convey the vaccine-mediated inductive signal for eliciting an innate immune response. A satisfactory immunogenic report from an in-silico immune simulation experiment directed us to propose our vaccine model for experimental and clinical validation. The reverse translated vaccine sequence was also cloned in pET28a(+) to apply the concept in a wet lab experiment in near future. Taken together, this in-silico study on the design of a vaccine construct to target W. bancrofti thioredoxin is predicted to be a future hope in saving human-being from the threat of filariasis.


Assuntos
Anti-Helmínticos/imunologia , Filariose Linfática/terapia , Proteínas de Helminto/imunologia , Tiorredoxinas/imunologia , Wuchereria bancrofti/imunologia , Animais , Anti-Helmínticos/uso terapêutico , Antioxidantes , Filariose Linfática/prevenção & controle , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
20.
J Biomol Struct Dyn ; 40(19): 8808-8824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33955317

RESUMO

Cystatin is a small molecular weight immunomodulatory protein of filarial parasite that plays a pivotal role in downregulating the host immune response to prolong the survival of the parasite inside the host body. Hitherto, this protein is familiar as an inhibitor of human proteases. However, growing evidences on the role of cystatin in regulating inflammatory homeostasis prompted us to investigate the molecular reasons behind the explicit anti-inflammatory trait of this protein. We have explored molecular docking and molecular dynamics simulation approaches to explore the interaction of cystatin of Wuchereria bancrofti (causative parasite of human filariasis) with human Toll-like receptors (TLRs). TLRs are the most crucial component of frontline host defence against pathogenic infections including filarial infection. Our in-silico data clearly revealed that cystatin strongly interacts with the extracellular domain of TLR4 (binding energy=-93.5 ± 10 kJ/mol) and this biophysical interaction is mediated by hydrogen bonding and hydrophobic interaction. Molecular dynamics simulation analysis revealed excellent stability of the cystatin-TLR4 complex. Taken together, our data indicated that cystatin appears to be a ligand of TLR4 and we hypothesize that cystatin-TLR4 interaction most likely to play a key role in activating the alternative activation pathways to establish an anti-inflammatory milieu. Thus, the study provokes the development of chemotherapeutics and/or vaccines for targeting the cystatin-TLR4 interaction to disrupt the pathological attributes of human lymphatic filariasis. Our findings are expected to provide a novel dimension to the existing knowledge on filarial immunopathogenesis and it will encourage the scientific communities for experimental validation of the present investigation. Communicated by Ramaswamy H. Sarma.


Assuntos
Cistatinas , Wuchereria bancrofti , Animais , Humanos , Ligantes , Simulação de Acoplamento Molecular , Wuchereria bancrofti/metabolismo , Simulação de Dinâmica Molecular , Receptor 4 Toll-Like/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...